孪生网络参考

COVID-19 detection from scarce chest x-ray image data using deep learning

作者使用的数据集来自kaggle:

1 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

2 https://www.kaggle.com/pranavraikokte/covid19-image-dataset
数据集1 含有 1200幅 COVID-19阳性图像,1341幅正常图像和1345普通肺炎图像。
数据集2 含有317幅图像,也分为上述三类。
孪生网络用于分类的方法示例:
在这里插入图片描述
同时输入两幅图像,经过图像增广+共享权重的CNN网络提取特征,模型目标是判断提取到的特征是否来自同一类。
在这里插入图片描述
图像分类-孪生网络
论文:

https://arxiv.org/pdf/2102.06285.pdf

代码:

https://github.com/shruti-jadon/Covid-19-Detection

两种类型(有/无参数共享)孪生网络代码:https://blog.csdn.net/qq_35826213/article/details/86313469

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值