同态加密学习——RSA

一个加密方案中,a、b明文,通过加密算法后生成a1,b1。若满足将a,b进行加法或乘法运算的结果加密 = 密文a1,b1进行加法或乘法运算的值,则说明这个算法具有加法同态性,或者乘法同态性。记加密操作为 E,明文为 m,加密得 e,即 e = E(m),m = E'(e)。已知针对明文有操作 f,针对 E 可构造 F,使得 F(e) = E(f(m)),这样 E 就是一个针对 f 的同态加密算法。全同态加密在同态加密的基础上有更高的要求,需要同时满足加法同态性和乘法同态性。

部分同态加密:指的是该同态加密方案只能做无限次同态加密加法或者只能做无限次同态加密乘法。在对同态加密的研究中,部分同态加密算法是要先于同态加密算法出现的。比较经典的是公钥密码体制中的RSA算法、ElGamal 算法和 Paillier 算法等。全同态加密:指的是可以对密文进行无限次数的任意同态操作。

RSA算法描述:RSA算法的安全性是基于大整数分解的困难性。直至今日,长度超过 1000位的 RSA 密钥仍被认为是安全的。

RSA算法的各个阶段:

(1)密钥生成阶段:

1、随机选择两个不相等的素数p和q(实际应用中,这两个数越大,就越难破解);

2、计算n=pq;n的长度就是密钥长度。实际应用

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值