DES结构
算法框图如下:
输入为明文分组64比特,首先进行初始置换,然后进行乘积变换,最后进行末置换。(其中初始置换和末置换互为逆置换)
乘积变换包括16轮,每轮需要不同的密钥,所以又需要密钥生成算法生成新的子密钥
一轮的乘积变换
乘积变换一共进行16轮,这里对每一轮的乘积变换进行描述。观察此结构,DES是基于平衡的Feistel网络,需要依据平衡Feistel规定执行。
首先将输入的64bit按照左右平均分成两个32bit,然后左边的不动,右边的进行一系列乘积变换操作,操作包括扩展置换–>异或密钥–>S盒代替–>P盒置换,然后将结果与左边32bit进行异或,输出为下一轮的右边部分,下一轮的左边部分为刚刚平分的右边32bit。
将这个输出又进行刚刚一系列变换,一共执行DES约定的轮数16轮。
子密钥生成
由上一节知道需要进行16轮乘积变换,所以可以需要由子密钥生成模块生成16个子密钥。
结构如下:
DES输入的有效密钥是56位,最先的输入是64位,会进行奇偶校验,校验就是通过PC-1置换表完成的。
将置换后的结果分成左右两部分,记成左侧C0,右侧D0,然后对左右两部分通过循环移位生成新的子密钥,需注意不同轮次的循环移位数不同,移位数如下:
代码实现
需要的置换表都在代码里面,例如PC_1[56]是初始密钥置换的表格,move_step[16]是控制每一轮子密钥需要左移多少位…
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int PC_1[56] = //子密钥生成—pc1置换
{
57,49,41,33,25,17,9,
1,58,50,42,34,26,18,
10,2,59,51,43,35,27,
19,11,3,60,52,44,36,
63,55,47,39,31,23,15,
7,62,54,46,38,30,22,
14,6,61,53,45,37,29,
21,13,5,28,20,12,4};
int move_step[16] = {
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1 };//循环左移
int PC_2[48] =//子密钥生成-pc2置换
{
14,17,11,24,1,5,3,28,
15,6,21,10,23,19,12,4,
26,8,16,7,27,20,13,2,
41,52,31,37,47,55,30,40,
51,45,33,48,44,49,39,56,
34,53,46,42,50,36,29,32};
int E_Table[48] = //E扩充置换表32-48
{
31, 0, 1, 2, 3, 4,
3, 4, 5, 6, 7, 8,
7, 8,9,10,11,12,
11,12,13,14,15,16,
15,16,17,18,19,20,
19,20,21,22,23,24,
23,24,25,26,27,28,
27,28,29,30,31, 0
};
int S_Table[8][4][16]=//S盒 压缩48-32 8个s盒,6进4出
{
{
{
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
{
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
{
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
{
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
},
{
{
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
{
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
{
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
{
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5