pandas读取CSV文件并减少存储的方法

     pandas读取文件后,可能因为文件存储空间过大,在普通的笔记本电脑上不易操作。在kaggle上学到了一种减少存储空间的方法,现记录如下:

 

print('Training Set Memory Usage = {:.2f} MB'.format(df_train.memory_usage().sum() / 1024**2))#计算mermory {:.2f}为保存小数点后两位

减小内存的函数如下:

def reduce_mem_usage(df, use_float16=False):
    """
    Iterate through all the columns of a dataframe and modify the data type to reduce memory usage.        
    """
    start_mem = df.memory_usage().sum() / 1024**2
    print("Memory usage of dataframe is {:.2f} MB".format(start_mem))
    for col in df.columns:
        if is_datetime(df[col]) or is_categorical_dtype(df[col]):
            continue
        col_type = df[col].dtype
        if col_type != object:      #dataframe中的str类型为object
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == "int":
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if use_float16 and c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype("category")

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值