win10下通过Anaconda3安装tensorflow并配置pycharm (CPU)

Window10系统Anaconda3 Python3.5 tensorflow cpu版本 安装教程:
https://blog.csdn.net/sylsjane/article/details/80871736)
注意:卸载重装时,一定要使用电脑关键将对应的注册码清理一下,还要将对应文件夹删除。血的教训!!!!!!
在这里插入图片描述

一.下载Anaconda

1.在百度搜索中输入Anaconda,然后选择下图中的Downloads-Anaconda,进入下载页,或者直接输入网址https://www.anaconda.com/download/
在这里插入图片描述
2.选择需要的Anaconda版本,我下载的是Windows 64位版本
在这里插入图片描述
二.安装Anaconda

1.双击运行下载完的Anaconda安装包
在这里插入图片描述
2.点击Next
在这里插入图片描述
3.滚动条拉到底部,点击I Agree
在这里插入图片描述
4.选择All Users ,然后点击Next
在这里插入图片描述
5.在Destination Folder下的文本框中输入安装路径,然后点击Next(特别注意:这里的安装位置,在pycharm配置tensorflow时,需要注意到该路径下寻找tensorflow,默认的路径有区别,对着路径寻找即可 )
在这里插入图片描述
注意一点:
在这里插入图片描述
6.等待安装完成就可以了

三. 安装完成Anaconda之后进行环境变量的测试
进入到windows中的命令模式:

(1)检测anaconda环境是否安装成功:conda --version
在这里插入图片描述
(2)检测目前安装了哪些环境变量:conda info --envs
在这里插入图片描述
(3). 更新conda
输入指令: conda update conda
在这里插入图片描述

四:conda升级出现的问题解决:

注意:anaconda出现CondaHTTPError问题解决办法
https://blog.csdn.net/ebzxw/article/details/80702506)
(1) .condarc(conda 配置文件)

Configuration — Conda documentation

.condarc以点开头,一般表示 conda 应用程序的配置文件,在用户的家目录(windows:C:\users\username\,linux:/home/username/)。但对于.condarc配置文件,是一种可选的(optional)运行期配置文件,其默认情况下是不存在的,但当用户第一次运行 conda config命令时,将会在用户的家目录创建该文件。

(2). CondaHTTPError问题

conda httperror http none none for url none Anaconda更新失败
在conda安装好之后,默认的镜像是官方的,由于官网的镜像在境外,访问太慢或者不能访问,为了能够加快访问的速度,这里选择了清华的的镜像。在命令行中运行(设置清华的镜像)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

在用户home目录下,找到 .condarc 文件,删掉channels下面的 -defaults一行
如果仍然错误的话,将channels:下的链接更新为https://mirror.tuna.tsinghua.edu.cn/help/anaconda/连接下的anconda源,比如:

conda config --remove channels ‘https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --remove channels ‘https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --remove channels ‘https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
(3).安装cpu版本的tensorFlow
输入指令: pip install --ignore-installed --upgrade tensorflow
在这里插入图片描述
(4).安装过程报如下红色提示的错误,则需要安装msgpack
在这里插入图片描述
(5).安装msgpack

输入指令: pip install msgpack
在这里插入图片描述
安装msglpack过程中如果出现如下红色提示错误,则需要安装新版本的tensorboard
在这里插入图片描述
(6).安装tensorboard
输入指令: pip install tensorboard
在这里插入图片描述

(7)对于Anaconda中安装一个内置的python版本解析器(其实就是python的版本)

    查看当前有哪些可以使用的python版本:conda search  --full -name python

    安装python版本(我这里是安装的3.5的版本,这个根据需求来吧):conda create --name tensorflow python=3.5

(8)激活tensflow的环境:activate tensorflow(注意:这个是在后序安装成功之后才能进行的,否则会提示错误)
在这里插入图片描述
(9)检测tensflow的环境添加到了Anaconda里面:conda info --envs(注意:基于后序安装成功之后才进行的,否则会提示错误)
在这里插入图片描述
(10)检测当前环境中的python的版本:python --version
在这里插入图片描述
(11)退出tensorflow的环境:deactivate
在这里插入图片描述
(12)切换到tensorflow的环境:activate tensorflow

上面的这些基本就可以对于Anaconda有一个比较简单的了解,其实它就类似于JDK的一些操作,比如我们查看jdk的版本,也可以用java --version ,所以说对于Anaconda去安装tensorflow是比较简单的原因也正是这样,也就是是给我们提供了一个基础的依赖环境,这样就方便我们进行后面的安装操作;

Anaconda的官方开发文档,可以看看,还是官网的东西更加好:

https://docs.anaconda.com/anaconda/user-guide/getting-started

https://anaconda.org/

五:进行正式的安装Tensorflow
注意事项:根据Tensorflow的官方文档,可以得到安装tensorflow的一个命令是下面:

pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.0.0-cp35-cp35m-win_x86_64.whl

但是,如果我们在cmd中,直接进行这样的话,有可能是不能够成功的,开始也不知道为什么,后面发现是跟电脑的cpu和显卡有点关系,所以,采取后面的方法进行安装;

(1)通过命令:pip install --upgrade --ignore-installed tensorflow
剩下的就是慢慢的等待安装的过程啦

温馨提示:(1)如果在这个命令之后,有提示说需要你升级你的pip的版本,那么你就根据上面的提示进行命令安装就可以了

(2):等待完成之后,确认是否安装成功

六:安装tensorflow
在开始菜单中找到Anaconda Prompt,双击运行
在这里插入图片描述
我这里说一下使用Anaconda Prompt的方式
方法一:步骤:①直接点击进入,就会显示如下的内容:
在这里插入图片描述
②切换到tensorflow的环境
在这里插入图片描述
③进入python编辑环境
在这里插入图片描述
④然后编写一个使用的代码
在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/20190113132755401.png

七:将Tensorflow环境嵌入到编辑器中
环境:Tensorflow和Pycharm编辑器

步骤:

1:下载Pycharm软件,,这个的话下载安装都很简单,所以就不多说了

2:使用Pycharm创建一个项目
在这里插入图片描述

3:设置项目的相关内容
在这里插入图片描述

温馨提示:注意上面的Interpreter的选择,因为我们现在要测试的是tensorflow嵌入到我们的IDE,方便我们开发,所以这个python解析器就是要选择我们之前安装tensorflow目录下的解析器,否则的话,我们之后是使用不了tensorflow的模块的内容的哦。。。特别要注意。。。当然,如果这里不选择,那么在创建工程之后还是可以修改的,后面我会说;

4:创建一个py文件,用于编写测试代码
在这里插入图片描述

5:运行程序代码
在这里插入图片描述

OKOK,,,这就说明我们的环境已经整合完成啦。。。。大功告成

温馨提示:有时候我们会发现,我们引入了tensorflow模块之后,那就会报错,这个原因有如下可能:

(1)tensorflow没有安装成功,这样的话,就需要重新按照我的步骤去了!

(2)IDE中的python解析器,没有使用tensorflow中安装的那个,所以导致无法识别

这个解决方案有两种:

第一种:就是创建工程的时候就选择正确的解析器,也就是我上面所使用的方法

第二种:就是在项目工程里面进行修改配置:

步骤:1:选择File----》setting
在这里插入图片描述

2:添加新的解析器
在这里插入图片描述

3:找到我们安装的Anadonda中的env中的tensorflow中的python.exe(此处的路径与安装anaconda3时的路径相关。注意查看)
在这里插入图片描述

4:点击apply应用,然后重启我们的IDE,这样的话就不会报无法找到tensorflow的模块的错误了。
原文:https://blog.csdn.net/cs_hnu_scw/article/details/79695347

补充:(此方法是在IDE找不到模块的时候可用)
给tensorflow安装第三方模块可以直接进入tensorflow环境下:

activate tensorflow ——> pip install *** 即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值