这是我参考中国大学mooc数据结构整理出的代码,看不懂的可以去看详细视频
https://www.icourse163.org/learn/ZJU-93001?tid=1002261004#/learn/content?type=detail&id=1003011828&cid=1003523999&replay=true
首先第一个方法看起来比较容易理解,但是时间复杂度为o(N的三次方)
上代码
int MaxSubseqSum1(int A[],int N)
{
int ThisSum,MaxSum=0;
int i,j,k;
for(i=0;i<N;i++)//i是假设的最大连续子列左端
{
for(j=i;j<N;j++)//j是右端
{
ThisSum=0;//记录A【i】到A【j】的子列和
for(k=i;k<=j;k++)
{
ThisSum+=A[k];
if(ThisSum>MaxSum)//如果刚得到的子列和更大
MaxSum=ThisSum;//则更新结果
}
}
}
return MaxSum;
}
算法二是在算法一的基础上,发现每次再累加ThisSum的时候每次都会从头累加,完全可以在原来j-1的基础上在累加一项即可,时间复杂度为o(N的平方)
上代码
int MaxSubseqSum2(int A[],int N)
{
int ThisSum,MaxSum=0;
int i,j;
for(i=0;i<N;i++)//i是假设的最大连续子列左端
{
ThisSum=0;//记录A【i】到A【j】的子列和
for(j=i;j<N;j++)//j是右端
{
ThisSum+=A[j];//对于相同的i,不同的j,只要在j-1基础上加累加一项即可
if(ThisSum>MaxSum)
MaxSum=ThisSum;
}
}
return MaxSum;
}
算法三是用的分治思想
递归的将序列不断地一分为二,求序列左边最大值和右边最大值,以及跨越中间的最大值,最后返回这三者的中最大值。
这种算法的复杂度为o(NlogN)
上代码
int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
return A > B ? A > C ? A : C : B > C ? B : C;
}
int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;
if( left == right ) { /* 递归的终止条件,子列只有1个数字 */
if( List[left] > 0 ) return List[left];
else return 0;
}
/* 下面是"分"的过程 */
center = ( left + right ) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和 */
MaxLeftSum = DivideAndConquer( List, left, center );
MaxRightSum = DivideAndConquer( List, center+1, right );
/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
LeftBorderSum += List[i];
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */
MaxRightBorderSum = 0; RightBorderSum = 0;
for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
RightBorderSum += List[i];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */
/* 下面返回"治"的结果 */
return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer( List, 0, N-1 );
}
算法四是在线处理算法
当第一个数字加进来的时候,如果为负数,则抛弃他,因为他只能让后面的序列和变小,不是负数的时候如果大于当前序列的子列和,则更新,如果小于当前子列和,先放到一边,因为他可能会使下一次读入的数变大。时间复杂度为o(N)
上代码
int MaxSubseqSum4(int A[],int N)
{
int ThisSum,MaxSum;
int i;
ThisSum=MaxSum=0;
for(i=0;i<N;i++)
{
ThisSum+=A[i];//向右累加
if(ThisSum>MaxSum)//发现更大和则更新当前结果
MaxSum=ThisSum;
else if(ThisSum<0)//如果当前子列和为负,则不可能使后面的部分和增大,抛弃之
ThisSum=0;
}
return MaxSum;
}