最大子列和问题

这是我参考中国大学mooc数据结构整理出的代码,看不懂的可以去看详细视频
https://www.icourse163.org/learn/ZJU-93001?tid=1002261004#/learn/content?type=detail&id=1003011828&cid=1003523999&replay=true
首先第一个方法看起来比较容易理解,但是时间复杂度为o(N的三次方)
上代码

int MaxSubseqSum1(int A[],int N)
{
    int ThisSum,MaxSum=0;
    int i,j,k;
    for(i=0;i<N;i++)//i是假设的最大连续子列左端
    {
        for(j=i;j<N;j++)//j是右端
        {
            ThisSum=0;//记录A【i】到A【j】的子列和
            for(k=i;k<=j;k++)
            {
                ThisSum+=A[k];
                if(ThisSum>MaxSum)//如果刚得到的子列和更大
                    MaxSum=ThisSum;//则更新结果
            }
        }
    }
    return MaxSum;
}

算法二是在算法一的基础上,发现每次再累加ThisSum的时候每次都会从头累加,完全可以在原来j-1的基础上在累加一项即可,时间复杂度为o(N的平方)
上代码

int MaxSubseqSum2(int A[],int N)
{
    int ThisSum,MaxSum=0;
    int i,j;
    for(i=0;i<N;i++)//i是假设的最大连续子列左端
    {
        ThisSum=0;//记录A【i】到A【j】的子列和
        for(j=i;j<N;j++)//j是右端
        {
            ThisSum+=A[j];//对于相同的i,不同的j,只要在j-1基础上加累加一项即可
            if(ThisSum>MaxSum)
                MaxSum=ThisSum;
        }
    }
    return MaxSum;
}

算法三是用的分治思想

递归的将序列不断地一分为二,求序列左边最大值和右边最大值,以及跨越中间的最大值,最后返回这三者的中最大值。
这种算法的复杂度为o(NlogN)
上代码

int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
    return A > B ? A > C ? A : C : B > C ? B : C;
}
 
int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
    int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
    int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
 
    int LeftBorderSum, RightBorderSum;
    int center, i;
 
    if( left == right )  { /* 递归的终止条件,子列只有1个数字 */
        if( List[left] > 0 )  return List[left];
        else return 0;
    }
 
    /* 下面是"分"的过程 */
    center = ( left + right ) / 2; /* 找到中分点 */
    /* 递归求得两边子列的最大和 */
    MaxLeftSum = DivideAndConquer( List, left, center );
    MaxRightSum = DivideAndConquer( List, center+1, right );
 
    /* 下面求跨分界线的最大子列和 */
    MaxLeftBorderSum = 0; LeftBorderSum = 0;
    for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
        LeftBorderSum += List[i];
        if( LeftBorderSum > MaxLeftBorderSum )
            MaxLeftBorderSum = LeftBorderSum;
    } /* 左边扫描结束 */
 
    MaxRightBorderSum = 0; RightBorderSum = 0;
    for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
        RightBorderSum += List[i];
        if( RightBorderSum > MaxRightBorderSum )
            MaxRightBorderSum = RightBorderSum;
    } /* 右边扫描结束 */
 
    /* 下面返回"治"的结果 */
    return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
 
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
    return DivideAndConquer( List, 0, N-1 );
}

算法四是在线处理算法
当第一个数字加进来的时候,如果为负数,则抛弃他,因为他只能让后面的序列和变小,不是负数的时候如果大于当前序列的子列和,则更新,如果小于当前子列和,先放到一边,因为他可能会使下一次读入的数变大。时间复杂度为o(N)
上代码

int MaxSubseqSum4(int A[],int N)
{
    int ThisSum,MaxSum;
    int i;
    ThisSum=MaxSum=0;
    for(i=0;i<N;i++)
    {
        ThisSum+=A[i];//向右累加
        if(ThisSum>MaxSum)//发现更大和则更新当前结果
            MaxSum=ThisSum;
        else if(ThisSum<0)//如果当前子列和为负,则不可能使后面的部分和增大,抛弃之
            ThisSum=0;

    }
    return MaxSum;
}

在这里插入图片描述

python023基于Python旅游景点推荐系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
JSP基于SSM网上医院预约挂号系统毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值