01背包,完全背包,多重背包问题总结

背包问题是很经典的一类题目,解决问题的重点是动态规划的状态转换。用了很久才大概弄明白了三种问题的解决方法,今天做一下总结。

01背包

首先是01背包,即给定N个物品,给出它们的价值和所占用的体积,再给定一个背包容量,要求再不超过背包容量的条件下能取得的最大值。一个经典的01背包问题就是Bone Collector。
动态规划的基本思想就是把大问题转化为小问题,通过前面解决过的小问题最终解决大问题;而它的中心就是状态转移方程了。
先从最开始考虑,如果只有一个物品放入背包那么最大价值是多少?很明显如果该物体体积大于背包容量(放不下)则为0,否则为该物体价值。
接下来再考虑加入第二个物体的结果。第二个物体只有两种选择,即加入或是不加入。若不加入则此时的结果和只有一个物体时的结果相同,反之结果则为将第一个物体放入容量为(背包容量-第二个物体体积)的背包的结果+第二个物品的价值。
我们用一个二维数组bag[i][j]保存将前i个物品放入背包容量为j的背包的结果,可以得到状态转移方程如下:
if(j<该物品体积)bag[i][j]=bag[i-1][j]
else bag[i][j]=max(bag[i-1][j],bag[i-1][j-物品体积]+物品价值)
具体代码如下:

#include<iostream>
#include<string>
using namespace std;
int max(int a, int b) {
	if (a > b)
		return a;
	return b;
}
int bag[50][50];
int value[50];//物品价值
int volum[50];//物品体积
int main() {
	memset(bag, sizeof(bag), 0);
	int N,M;//N件物品,背包容量为M
	cin >> N>>M;
	for (int i = 1; i <= N; i++)
		cin >> value[i];
	for (int i = 1; i <= N; i++)
		cin >> volum[i];
	for(int i=1;i<=N;i++)
		for (int j = 1; j <= M; j++) {
			if (volum[i] <= j)
				bag[i][j] = max(bag[i - 1][j], bag[i - 1][j - volum[i]] + value[i]);
		}
	cout << bag[N][M] << endl;
}

此外,我们可以发现计算bag[i][j]时只使用到bag[i-1][0…j]的值,因此可以将bag变为一维数组。

for (int i = 1; i <= N; i++)
		for (int j = M; j > 0; j--)
			bag[j] = max(bag[j], bag[j - volume[i]] + value[j]);

注意j要反向计算,否则0…j中的记录会先被更新。

多重背包

多重背包与01背包不同的是每个物品不是只有一件,而可以有多件。多重背包问题的解决方法是先将该问题转化为01背包,即将n个物品i分别存成n个物品再用01背包的方法解决。
代码如下:

int main() {
	memset(bag2, sizeof(bag2), 0);
	int N, M;
	cin >> N >> M;
	for (int i = 1; i <= N; i++)
		cin >> value[i];
	for (int i = 1; i <= N; i++)
		cin >> volum[i];
	for (int i = 1; i <= N; i++)
		cin >> num[i];
	int k = N+1;
	for(int i=1;i<=N;i++)
		while (num[i] != 1) {
			volum[k] = volum[i];
			value[k] = volum[i];
			num[i]--;
			k++;
		}
	for (int i = 1; i <k; i++)
		for (int j = 1; j <= M; j++)
			if (volum[i] <= j)
				bag[i][j] = max(bag[i - 1][j], bag[i - 1][j - volum[i]] + value[i]);
	cout << bag[N][M];

完全背包

完全背包中每个物品都有无限件,因此不需要像01背包一样考虑每件物品是否已经被取,只需用一个一维数组保存当背包容量为j时的结果便可解决。
代码如下:

#include<iostream>
using namespace std;
int value[50];
int volume[50];
int bag[50]= { 0 };//每件物品可以取无限次
int max(int a, int b) {
	if (a > b)return a;
	return b;
}
int main() {
	int N, V;
	cin >> N >> V;//N个物品 背包容量V
	for (int i = 1; i <= N; i++)
		cin >> value[i];
	for (int i = 1; i <= N; i++)
		cin >> volume[i];
	for (int i = 1; i <= N; i++) {//前i种物品
		for (int j = volume[i]; j <= V; j++)//放入体积为j的背包,无需考虑该物品是否取过,在体积为j时只用考虑取或者不取
			bag[j] = max(bag[j], bag[j - volume[i]] + value[i]);
	cout << bag[N][V] << endl;
}

总之三种背包问题最重要的是找到相应的状态转移方程。
背包问题是十分经典的一类动态规划问题,建议在这一类问题上多花一些时间打好基础,仔细考虑一下状态转移方程究竟是怎么工作的。

  • 17
    点赞
  • 63
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值