迁移学习三——BDA和W-BDA

本文深入探讨了《Balanced Distribution Adaptation for Transfer Learning》中提出的BDA和W-BDA方法。BDA通过引入权衡因子μ处理边缘分布与条件分布的平衡问题,而W-BDA则针对类别不平衡的迁移学习任务,利用权重矩阵改进适应性。两者的优化目标函数在JDA的基础上进行了扩展,并在实际应用中提供了更多的灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是对《Balanced Distribution Adaptation for Transfer Learning》进行学习。

问题引入

回顾之前的JDA,其目标函数是:
m i n A ∑ c = 0 C t r ( A T X M c X T A ) + λ ∥ A ∥ F 2 min_{A}\sum_{c=0}^{C}tr(A^{T}XM_{c}X^{T}A)+\lambda \begin{Vmatrix} A \end{Vmatrix}_{F}^{2} minAc=0Ctr(ATXMcXTA)+λAF2
s . t . A T K H K T A = I s.t.A^{T}KHK^{T}A=I s.t.ATKHKTA=I
其中c=0表示的是边缘分布,c=1,…,C表示的各类别的条件分布,可以看出边缘分布和条件分布是被同等对待的,这会导致实际应用中表现较差。当数据集不相似时,减小边缘分布差异更为重要;当数据集相似时,减小条件分布更值得注意。针对这个问题,论文提出了BDA,对两者之间进行了权衡,可以很好地应用到一些特定的迁移学习任务中。
另外现存的方法都假设数据集是平衡的,这也算法限制了在不平衡数据集上的任务的表现,Weighted Balanced Distribution
Adaptation(W-BDA)则用于处理迁移学习中的类别不平衡问题,在每个类别上加入了权重。

BDA

学习过JDA后可以很容易的推出BDA的形式,我们在边缘分布和条件分布之间引入权衡因数 μ \mu μ,那么上述目标函数可以表示为:
m i n A t r ( A T X ( ( 1 − μ ) M 0 + μ ∑ c = 1 C M c ) X T A ) + λ ∥ A ∥ F 2 min_{A}tr(A^{T}X((1-\mu)M_{0}+\mu\sum_{c=1}^{C}M_{c})X^{T}A)+\lambda \begin{Vmatrix} A \end{Vmatrix}_{F}^{2} minAtr(ATX((1μ)M0+μc=1CMc)XTA)+λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值