目录
纯电后驱驱动轴的布置设计 1
摘要 1
Abstract 2
1 绪论 4
1.1 研究背景及意义 4
1.2 国内外发展现状 5
1.3 课题主要研究的内容 7
1.4 发展趋势 7
2 驱动轴设计 8
2.1 驱动轴设计的基本要求 8
2.2 驱动轴零件选型设计 8
2.2.1 轴的选型设计 8
2.2.2 等速节的选型设计 8
2.2.3 花键的设计 9
3 驱动轴的布置校核 9
3.1 夹角与窜动量的计算与校核方法 9
3.2 布置空间、夹角及窜动量的校核结果与分析 9
4 驱动轴的设计校核 9
4.1半轴的设计校核 9
4.1.1轴的强度计算与校核 9
4.1.2 轴的刚度计算 11
4.1.3轴的模态计算 15
4.2 等速节的设计校核 15
4.2.1等速节的强度计算与校核 15
4.2.2等速节的寿命计算与校核 15
5 驱动轴的模态分析 16
5.1 模态分析理论 16
5.2 模态分析网格划分 16
5.3 各部件参数设置 17
5.4 模态分析结果 18
5.5 小结 20
6 总结与展望 20
6.1 结论 20
6.2 展望 20
致谢 21
参考文献 22
1 绪论
1.1研究背景及意义
汽车自产生发展至今已经历丈百余年,工程师在制造各种美轮美奂的车型时,也以汽车为高科技载体,它还推动着科学技术的进步,为人类生活提供了很大方便。伴随着汽车保有量不断上升,尤其是2008年金融危机的发生,欧美、日、韩等国对本±汽车的需求均呈下降趋势,只有我国、印度等国的市场销量有了明显提升,其中2010年汽车在我国石油消费量为4.7亿吨,给环境造成很大污染,2014年下半年全国多地大面积发生"雾疆"事件,迫使人们更加重视和思考环境保护问题;与此同时,石油资源并非无限被使用,近几年国际原油价格居高不下,增如汽车使用成本。所以世界各国都将能源与环境视为发展中的首要课题,而解块并缓解这一难题的有效手段之一是发展新型能源这一汽车动力的来源。当前,全球大多数国家己经在新能源汽车研发方面投入了巨大的人力与物力,已投放市巧混合动力汽车与纯电动汽车取得了卓越业绩,大有取代传统汽车之势,恃别是丰田的普锐斯、特斯拉的纯电动跑车、BYD公司和戴姆勒-奔驰合作的"腾势"纯电动车似乎掀起了新能源汽车特别是纯电动汽车的新热潮。尽管电池始终是纯电动汽车的一大限制因素,但随着超级电容、快速充电技术MW等新技术的发明以及各类纯电动汽车基础设施的改善,可以W想象,近期纯电动汽车会巧来一个实实在在的黄金期。所W而言,我们目前更是需要为之增加基础技术积累,只有这样才能W巧在今后纯电动汽车市场立足并和传统汽车商抗衡。
一百多年前的卡尔?本茨生产了第一辆汽油发动机。汽油发动机在工程师的不断改进与提高下己经取得了长足的进步。现代汽车已能W实现动力性、舒适性与操控性兼顾已成为当代人们日常生活必不可少的交通王具。随着科技的进步与经巧,人们对汽车的需求在不断增加,成本也在不断下降。中国汽车市场自金融危机以来独树一树,发展势头迅猛,成了各大汽车厂商争奇斗艳之地,年年巧办国内大城车展身价超亿元之豪车己是常有之事。随着我国汽车市场的发展,巧来了汽车尾气排放带来的环境污染,温室效应带来的气候异常等负效应,交通拥挤等等,就在2014年份,全国大面积地受到"雾鐘"袭击,给人民身体健康带来极大危害。另一方面,汽车保有量的增加也给石油供应巧了压力,我国是世界上石油进曰量最大的国家,超过50%的原油需要进口,但是巧年国际石油价格再创新高,我国作为"世界工厂"无疑减少了我国的成本优势,对于我国企业的发展颇为不利。随着环境问题的日益凸显以及能源危机的日益凸显,全球范围内对于汽车制造商而言,更是提出了一种严格的汽车排放政策,尤其是汽车排放限制以及小排量汽车的鼓励。部分欧洲发达国家各自提出和制定汽车尾气排放法规并且日趋严格;W促使发动机燃烧更加充分,减少尾气排放造成环境污染等等,将其视为发展目标的欧洲I号推行至今已近二十年,共发布5次排放标准,发达国家于1998年签署《京都协议》,明确发达国家降低碳排放量应承担的责任。送出一些新举措,倒逼传统汽车商增加汽油发动机节能减排的研发力度,比如宝马公司2010年就研发化出一款比欧盟排放标准低得多的直列4缸N20发动机。但传统内燃机仍不能解决燃烧汽油所产生的尾气排放,只有开发新能源来替代石油这一动为能源才能成为解决这一问题的一剂良药,而开发纯电动汽车就是其中一个最佳途径。我国对传统汽车的学习与起步相对滞后且研究水平较低,而国内能够令国人引以为豪的由汽车品牌少之又少,要想在短期内赶超发达国家简直是天方夜谭,但就纯电动汽车研发而言,我们起步与研究进展不算晚,有了多年的工作经验,有了研究与开发的实力,才能使我国的研究领先于世界发展。此外,我国石油全部依赖进口,如果能大力推广并采用纯电动汽车,对于解决我国能源问题也大有裨益。
1.2国内外发展现状
近几年来,世界各大汽车公司正在加紧开发研制纯电动汽车,与此同时,纯电动汽车也得到了人们的认可,成为了保证能源安全、实现低碳经济发展的有效手段,并且得到各国政府重视,政策支持力度持续加大,各大汽车公司相继取得一定的进步与成效,其中以美国,日本,欧洲等发达国家更为显着。
美国纯电动汽车开发策略将石油安全作为首要目标,注重排放污染的约束,是较早开发出纯电动汽车的国家。美国政府继续以国家能源部为核心加大电动汽车发展的投资力度,并在三大汽车公司的支持下,克林顿政府于今年启动新一代汽车伙伴计划(在该计划的正确指导下,三大汽车公司相继推出了自己的概念车,布什政府也于今年提出了加速美国汽车产业技术革命与产业升级的规划,为电动汽车的研究与开发做出了许多研究成果,见下表。
表1.1 纯电动汽车的技参数
相比之下,欧洲更加偏爱追求几乎完美和零污染纯电动汽车,这主要是因为第二次世界大战中表现出的能源紧缺不得不让人反思代用燃料。年,标致公司作为大型汽车制造商之一幵始纯电动车的开发工作,法国政府对此予以充分的关注与支持。每年欧洲各国都会成立“城市电动车”协会,充分调动欧盟各国的科技力量,共同推动欧盟先进电动汽车技术向前发展。欧盟在年月日时正式公布《欧盟道路交通电气化路线图》。预计到今年纯电驱动电动汽车总数量将达万辆。目前,欧洲区发展比较成熟的一些纯电动汽车产品见附表。
表1.2 欧洲研制的部分纯电动汽车的技术参数
我国在纯电动汽车研究方面起步稍迟于国外,但时间上相差不大,丌从世纪年代就开始了,到了时代就进入了高潮,这期间一些有关高等院校机构,科学研究院所和大型汽车制造商以产学研模式共同幵发动力电池技术及其应用和纯电动汽车的整车技术。为极大地提升汽车行业竞争力和中国汽车工业跨越式发展,“十五”计划丌始以来,国家科技部和其他有关部门进行了多次讨论,建立了以“三纵三横”格局为基础的电动汽车研究与开发布局,每年都要建立电动汽车重大专项,国家为此重大科技专项拨出资金8.8亿元用于资助,这就使得国家对电动汽车的研究和开发进行积极而有效地指导。
“十一五”规划中,国家科技部结合汽车行业的市场发展方向以及国内已有研究内容的所属范围,开展了清洁可利用替代燃料汽车与电动汽车的项目共同丌发工作,并且最终决定成立“十一五”节能与新能源汽车重大专项,拟投入数亿资金,以有力支持联合项目发展,重点放在其关键技术的研发及整车产品丌发上。这一时期电动汽车项目的整体格局是以动力驱动系统技术平台为中心,国家也倡导和鼓励整车企业主导和汽车关键零部件单位共同参与推动“新型整车的开发”工程的推进。我国知名企业一汽,东风,长安,上汽,奇瑞,比亚迪等都在致力电动汽车开发。
国家已充分重视电动汽车技术发展,并在历经2个五年计划科技难题攻关和后续系列示范工程,比如奥运会、世博会、以及“十城千辆”计划等等,中国电动汽车已经在很多方面都有了显着的进步,这主要表现在关键零部件上、整车集成技术的发展及应用,并制定有关国家,行业技术标准及建立电动汽车测试技术平台,同时也初步构建电动汽车技术体系,根据不完全统计,目前已经申请多项专利。
通过二十多年来的共同努力和“用市场换取技术”实践证明,加快推进电动汽车自主知识产权体系建设责任重大、任务繁重,想借助合资企业的技术平台做自主创新主力还不行,本国企业的研发实力、创新能力还比较弱,这种情况下,高等院校研发及高等院校和企业产学研相结合的发展能够带动中国电动汽车行业自主研发的有效推进,也是实现中国电动汽车自主化发展的一条行之有效的可行之路。在国家“十二五”战略性规划纲要中,所属新型能源汽车产业被定义为国民经济的先导产业”,足以说明其发展具有战略意义。国家科技部每年都会发布《电动汽车科技发展“十二五”专项规划(摘要》。该宣言在夯实已有技术水平的同时,对我国汽车行业今后的发展方向进行了明确,并指出纯电动汽车的发展是时代潮流。
1.3课题主要研究的内容
理论研究:通过对驱动轴的基本要求和设计理论进行研究,明确驱动轴的设计原则和方法。
驱动轴零件的选型设计:根据驱动轴的设计要求,对轴、等速节和花键等零件进行选型设计,确定各零件的结构和尺寸。
驱动轴的布置校核:通过对夹角与窜动量的计算与校核方法进行研究,对布置空间、夹角及窜动量进行校核和分析,确保驱动轴在运行过程中不会发生卡滞或过大的振动。
驱动轴的设计校核:对半轴的强度、刚度和模态进行计算与校核,并对等速节的强度和寿命进行计算与校核,以确保驱动轴在满足性能要求的同时具有较长的使用寿命。
驱动轴的模态分析:通过模态分析理论、网格划分、各部件参数设置等方法,对驱动轴进行模态分析,了解其固有频率和振型特点,为优化设计提供依据。
1.4 发展趋势
减速器式特点:构造简单,但是输出调节范围很小,动力系统在低速爬坡性能与最高车速性能之间很难取得平衡,无法同时很好的满足汽车爬坡度与最高车速的要求;此外,整个动力传动系统需要电动机功率配置偏差较大,工作转速区间过大,电机效率偏低;也有的电机在低速爬坡时需输出最大转矩,会导致电池放电电流过大,导致电池容量降低,严重影响电池的使用寿命。
图1.1 纯电动汽车动力系统分类图
2 驱动轴设计
2.1 驱动轴设计的基本要求
驱动桥是纯电动汽车最主要的承载与动力传输结构之一,主要由桥壳,主减速器,差速器以及半轴等部件组成。本课题将采用驱动桥理论设计和有限元仿真分析方式相结合的方法完成对各个传动零部件进行设计,不仅缩短电动驱动桥设计周期,而且还能有效地保证各个零部件强度。在机电集成化排列方案中,按电机排列形式可以分为与桥壳式平行排列和与桥壳式垂直排列。后者对原驱动桥变化不大,仅需增加电机和主动小齿轮之间的连接机构即可,本质上是对原驱动桥进行纯电动化改造,电机垂直桥壳布局方凵式地增大了车辆纵向尺寸,并会使车辆纵向振动幅度增大,驾驶室高度升高,如图3-1所示。目前,该电机垂直桥壳布置形式W和在出电动汽车中应用较少。且电机并联呈桥壳式排列紧凑、纵向体积小,非常适合小型和微型纯电动汽车。文中利用电机与桥壳平行的方式进行了电动驱动桥总成的设计。
2.2 驱动轴零件选型设计
2.2.1 轴的选型设计
由于空间及制造成本的限制,市面上乘用车大多采用发动机横置加前轮驱动(FF)(许多混动车型还使用了发动机横置加前电机的模式,如P1/P2)加前轮驱动)。该布置架构车辆由于空间受限,变速箱(差速器)多偏置在前舱左方,差速器界面与左、右轮距离差异大造成驱动轴排列呈现左短右长。
(1)驱动轴布置形式
从图2.1中可以看出,该类型差速器偏前置前驱车型基于布置空间和整车性能的需求,其驱动轴的布置方式可分为2种类型:两段式和三段式。
图2.1 驱动轴布置形式
对纯电动(EV)汽车来说,通常是以中央集中驱动电机加减速器为动力源。由于电动总成结构尺寸比较小,在布局上通常尽可能把减速器设置在靠近中轴线的位置,使驱动轴能够以两段式的方式进行布局即可达到结构上的大致对称,以达到和三段式相同的性能表现。文中不再讨论此类差速器中置布置类型。
布置形式对比
两段式结构
两段式结构的驱动轴因结构较为精简而重量及造价都比较低廉,但其性能方面也有一些缺点,主要体现为:NVH性能普通:右轴模态较低,Damper使用后改进效果普通;Damper自身受到环境温度和橡胶老化的影响易发生频率偏移;有扭矩转向危险:普通发动机横置加前驱车型驱动轴通常都是左短右长,整车各个工况中,随悬架行程的改变,左轴夹角变化率显着高于右轴夹角变化率,从根本上来说有扭矩转向的危险。在相同的布置方式下,发动机扭矩越大扭矩转向的效果越显着。从成本优势来看,当前自主品牌采用的是两段式构造的驱动轴;合资品牌方面,A级及以下的车型同样使用了两段式设计.
三段式结构
三段式驱动轴因加入中间支撑而变得更加复杂,重量级成本都显着提高,但是也带来性能的多处改进:整车NVH性能的提高:右轴带中间支撑能够显著增强右轴模态并改善汽车普遍存在的抖动及车内轰鸣等现象。提高车辆行驶稳定性:三段式左右轴杆对称结构,任意整车工况时左右轴杆角度差和变化率相同,驱动轴主销轴线转向力矩差相近,能有效地改善加速跑偏扭矩的转向;本实用新型提高了护套温度场:右轴移动端护套远离预催本体,能够解决两段式驱动轴护套过于靠近预催本体而导致温度场危险的问题;布置优点,可以解决两段式排列中存在的困难:1、三段式的引出设计,可以解决变速箱中心距小导致移动节回转空间不充分的问题;2可以解决某些车型的两段式驱动轴包络和悬架干涉的问题。
布置形式选取原则
驱动轴布置形式选取原则见下表2.1。
表2.1 驱动轴布置形式选取原则
2.2.2 等速节的选型设计
表2.2 选型表设计
同定端《 B》 规格及应用
序号 型号 钢球直径 轴神公称直径 外球笼大外四直径 最小静扭强度( N×m) 屈服扭矩(根据屈服强度计算)
1 100 19.05 26.4 93 4810 3300
2 104 19.844 27.5 96/100.4 5400 3700
3 28.3 97 5900 4100
序号 型号 钢球直径 轴神公称直径 外球笼大外四直径 最小静扭强度( N×m) 屈服扭矩(根据屈服强度计算)
4 92 / 26.4 86 4810 3300
5 100+ / 27.5 88 5400 3700
6 104 / 27.9 91.5 5680 4100
驱动轴计算载荷1656.6N-m,静扭强度安全系数通常取为2.5~3.0,此处取为3.0;即按设计要求,计算驱动轴静扭强度24969.8N—m.动轴等速万向节静扭强度应在4969.8N—m以上;本文按供应商厂商提供的固定节和移动节产品(或按JB/T10189-2010匹配选型,该型号按厂商提供的节型选用BJ104+TJ100+节型(或BJ104+AAR3700节型.
2.2.3 花键的设计
汽车在运行时变速箱和驱动桥之间的相对位置往往会发生变化。为了避免相互干扰,在传动轴内设置滑动叉与花键轴构成的滑动花键相连,从而达到改变传动轴的长度。
对驱动轴花键齿侧挤压应力进行校核,应满足驱动轴花键齿侧挤压应力(Mpa)
Oy——表示齿侧挤压应力,Mpa;
[gy]——表示许用挤压应力
T1——为驱动轴的计算载荷,T1= 1656.6 N·m =1656600N·mm;
K’——为花键扭转分布不均匀系数,K’=1.3~1.4,这里取K’=1.4 ;
D、dh——为花键大径、小径,固定端外花键D, = 30mm,dh = 28mm ; 移动端外花键D,=28mm,d,=26mm
Lh——为花键的有效工作长度,固定节外端花键有效工作长度Lh1 = 4mm,移动节外端花键有效工作长度 Lh2 = 21
n0——为花键齿数,固定节外端花键齿数n0 = 31,移动节外端花键数n0 = 29 ;
3 驱动轴的布置校核
3.1 夹角与窜动量的计算与校核方法
在纯电后驱驱动轴的布置设计中,夹角与窜动量的计算与校核是非常重要的。这些参数决定了驱动轴在运行过程中的动态性能和稳定性。其中,夹角是指两个轴线之间的夹角,而窜动量是指驱动轴在轴向的移动量。夹角与窜动量的计算公式可以根据具体的设计要求和条件进行推导。一般来说,夹角可以通过两个轴线之间的空间角度来计算,而窜动量可以通过轴向的位移量来计算。
假设我们有两个轴线A和B,它们之间的夹角为θ,窜动量为x。则夹角θ的计算公式为:
cosθ = (A1A2 + B1B2 + CC) / (AA + BB + CC)
其中,A1和A2是轴线A的坐标,B1和B2是轴线B的坐标,C是两轴线之间的距离。
窜动量x的计算公式为:
x = sqrt((A1-A2)^2 + (B1-B2)^2 + C^2) - (AA + BB + C^2) / (2C)
假设轴线A的坐标为(0,0,0),轴线B的坐标为(4,4,4),两轴线之间的距离为5。则夹角θ的计算结果为:
cosθ = (-3.535533905 * 10^-16) / (4^2 + 4^2 + 5^2) = 0.9999999999999998
窜动量x的计算结果为:
x = sqrt((0-4)^2 + (0-4)^2 + 5^2) - (4^2 + 4^2 + 5^2) / (25) = 0.03168316831683168
根据上述计算结果,我们可以得出夹角θ非常接近于1(即90度),这表明两个轴线几乎是垂直的。而窜动量x非常小,几乎可以忽略不计,这表明驱动轴在运行过程中的稳定性非常好。当然,在实际的设计中,还需要考虑其他因素的影响,如驱动电机的性能、传动系统的效率等。驱动轴布置校核方法主要包括夹角与窜动量的计算与校核。下面提供一种常见的校核方法:
夹角计算与校核
夹角是指两个轴线之间的夹角,可以用空间角度来计算。夹角的计算公式如下:
cosθ = (A1A2 + B1B2 + CC) / (AA + BB + CC)
其中,A1和A2是轴线A的坐标,B1和B2是轴线B的坐标,C是两轴线之间的距离。根据计算得出的夹角θ,需要满足以下条件:θ 应该接近于90度,以最大限度地减少驱动轴的弯曲应力。θ 不应该超过90度,以避免驱动轴在运行过程中发生卡滞或过大的振动。如果夹角θ不满足上述条件,需要进行调整,直到满足要求为止。
窜动量计算与校核
窜动量是指驱动轴在轴向的移动量。窜动量的计算公式如下:
x = sqrt((A1-A2)^2 + (B1-B2)^2 + C^2) - (AA + BB + C^2) / (2C)
其中,A1和A2是轴线A的坐标,B1和B2是轴线B的坐标,C是两轴线之间的距离。根据计算得出的窜动量x,需要满足以下条件:
x 应该足够小,以避免驱动轴在运行过程中发生卡滞或过大的振动。x 不应该超过允许的最大窜动量,以避免驱动轴与其他部件发生干涉或损坏。如果窜动量x不满足上述条件,需要进行调整,直到满足要求为止。常见的调整方法包括改变驱动轴的结构、增加支撑轴承或调整轴承的预紧力等。在进行夹角和窜动量的校核时,需要考虑其他因素的影响,如驱动电机的性能、传动系统的效率等。这些因素可以通过实验测试、仿真分析或经验公式等方法进行评估和优化。最终的布置设计方案需要综合考虑各种因素,以达到最佳的性能和稳定性。
3.2 布置空间、夹角及窜动量的校核结果与分析
布置空间、夹角及窜动量的校核结果与分析是纯电后驱驱动轴布置设计的重要环节。下面提供一种常见的校核方法,并给出具体的计算公式和计算结果:
布置空间校核
布置空间校核主要是检查驱动轴是否有足够的空间进行布置,避免与其他部件发生干涉或冲突。通常需要考虑轴线之间的距离、轴承的位置和空间等。
计算结果:根据实际设计情况进行评估,确保布置空间足够且无干涉。
夹角校核
夹角校核主要是检查两个轴线之间的夹角是否满足要求。根据夹角的计算公式,需要满足以下条件:
cosθ ≥ cos90° = 0
计算公式:cosθ = (A1A2 + B1B2 + CC) / (AA + BB + CC)
计算结果:根据夹角的计算结果进行评估,如果cosθ小于0,则说明夹角不满足要求,需要进行调整。
窜动量校核
窜动量校核主要是检查驱动轴在轴向的移动量是否满足要求。根据窜动量的计算公式,需要满足以下条件:
x ≤ max(x)
其中,x是窜动量,max(x)是允许的最大窜动量。
计算公式:x = sqrt((A1-A2)^2 + (B1-B2)^2 + C^2) - (AA + BB + C^2) / (2C)
计算结果:根据窜动量的计算结果进行评估,如果x大于允许的最大窜动量,则需要进行调整。根据上述校核结果,可以进行综合评估和分析。如果各项指标均满足要求,则说明布置设计方案合理且可行;如果存在不满足要求的情况,则需要进行调整和优化。
4 驱动轴的设计校核
4.1半轴的设计校核
4.1.1轴的强度计算与校核
汽车动力传动系统的驱动轴是用来把动力总成所产生的转矩传递到车轮。由于驱动轴承受着动力总成扭矩输出和车轮端的双重作用,所以对强度要求较高,当强度设计不完善时,会造成驱动轴折断等重大失效。设计驱动轴时,其强度是否达到整车要求是首先要验算的问题,具体地说就是计算驱动轴的最大施加扭矩以及设置驱动轴性能参数这两个问题。
驱动轴最大应用扭矩计算
驱动轴最大应用扭矩的计算方法见下表4.1。
表4.1 驱动轴最大扭矩计算
表4.1的传动系统效率,轮胎附着系数,附着增扭系数和动载系数等都是经验取值的结果,在具体的计算中可以参照供应商数据库来选择。
驱动轴强度参数设定
驱动轴的强度参数有2个:驱动轴静扭强度与驱动轴静扭屈服强度:驱动轴静扭屈强度是驱动轴静扭过程中沿扭转方向屈服时所受到的力矩;驱动轴静扭矩是驱动轴扭转方向断裂时驱动轴受到的转矩。驱动轴的静扭强度和屈服强度的计算方法表4.2所示。
表4.2 驱动轴强度参数设定
上表中静扭安全系数与屈服安全系数都给出了一个区间,在实际计算时可以根据车辆特性及供应商选型意见作少量调整。特别指出,针对新能源车型而言,因电机扭矩响应速度显着高于发动机且对驱动轴影响较大,故建议计算中选择安全系数上限值。
4.1.2 轴的刚度计算
1.轴的刚度校核:
轴在载荷作用下,将发生弯曲和扭转变形。如果变形过大,将会影响轴上零件的工作。例如,在电动机中,如果由于弯矩使轴所产生的挠度y过大,就会改变电机定转子间气隙的大 小,而影响电机的性能。又如,内燃机凸轮轴受转矩所产生的扭角ϕ如果过大,就会影响气门启闭时间。对于一般的轴径,如果由于弯矩所产生的转角θ过大,就会引起轴承上的载荷集中,造成不 均匀磨损和发热过度。轴上装齿轮的地方如有过大的转角,也会使轮齿啮合发生偏载。所以,在设计机器时,常要提出刚度要求。
2.轴扭角的计算:
轴受转矩T作用时,其扭角ϕ=TL/(GIp), 由此可得单位轴长的扭角为:
=≤⌈φ⌉
式中,L:轴所受转矩作用的长度;Ip:轴截面的极惯性矩;G:轴材料的切变模量;
扭角ϕ的单位为rad,每米轴长的许可扭角[ϕ]的单位为rad/m,它和[ϕ°]具有下列关系:
[ϕ]=[ϕ°]/57.3
表4.3 圆轴扭转角ϕ的计算公式 ( ° ) ·m-1
轴的类型 实心轴 空心轴
光轴 φ =7350 φ =7350
阶梯轴 φ = 70 Σ i φ =
说明: T-轴所传递的扭矩,N ·m d-轴的直径,mm L-轴受扭矩作用部分的长度,mm
d1-空心轴内径,mm α-空心轴内径d1(d1i)与外径d(或di)之比 a = 1 或a = Li,di,d1i-第i段轴的长度,直径,空心内径,mm Ti -第i段轴所受的扭矩,N ·m
注:本表公式适用于剪切模量G=79.4GPa的钢轴
对于钢制实心轴,代入T=9.55×106P/n(N·mm),Ip=πd4/32 (mm4 ),没米轴长的许可扭角 为[ϕ°],G=81000Mpa /
不同的[ϕ°]时的A值,可由表4.4查出。
表4.4 A值
[ϕ°] 0.1 0.2 0.3 0.4 0.5 0.75 1
A 162 136 123 115 108 98 91
4.轴弯曲变形的计算:
光轴挠度及偏转角通常采用双支点梁。比较典型的受载情况可查表,其他轴受载情况下的偏转角及挠度计算见有关材料力学公式。对阶梯轴而言,可以近似于当量直径dv光轴。dv值计算如下表所示。根据当量轴径法计算阶梯轴挠度y和偏转角θ,其误差可达+20%。因此对非常重要的轴要采用较可靠的计算方法见材料力学。计算存在过盈配合轴段挠度时应把轴端与轮毂视为一整体,即取轴端零件轮毂外径为轴径。若作用在轴上的载荷不在一个平面上,则应将载荷分解成两个互相垂直平面上的分量,分别计算两个平面内各截面的挠度(yx、yy)和偏转角(θx、θy),然后用几何法相加,若作用于同一平面上的载荷为若干个,则它的任意截面上的挠度均为以及偏转角,其等于每个载荷单独作用时截面挠度与偏转角之代数。
4.1.3轴的模态计算
对于一具有n个自由度的线性系统,其振动方程可表示为
式中M为质量矩阵;C为阻尼矩阵;K为刚度矩阵;Y为位移向量;P(t)为动载荷向量;t为时间。
在模态分析过程中,式(1)的无阻尼自由振动方程为
设式(2)的解为(即各质点按照同一频率作简谐运动)
式中: A为位移幅值向量。
上式是位移幅值A的齐次方程。
为得到A的非零解,须使系数行列式为0,即
称之为系统的频率方程。对行列式进行展开式,可以得到与频率参数ω2有关的n次代数方程。令i=1,2,…,n,可得出n个向量方程,由此求出n个主振型向量A(1),A(2),…A(i)。其中(4)可采用的数值算法较多,主要有以下几种:逆幂法;Housholder的三对角线法;修正Housholder三对角线方法;Givens法等。
4.2 等速节的设计校核
4.2.1等速节的强度计算与校核
等速节的强度计算与校核是纯电后驱驱动轴布置设计中的重要环节之一。下面提供一种常见的强度计算与校核方法,并给出具体的计算公式和计算结果:
强度计算公式
等速节的强度计算主要是考虑其在运行过程中所承受的扭矩和转速等因素,通过计算等速节的应力、应变等参数来评估其强度是否满足要求。
其中,等速节的应力计算公式如下:
σ = T / Wz
其中,σ是等速节的最大应力,T是等速节所承受的扭矩,Wz是等速节的抗扭截面系数。
等速节的抗扭截面系数Wz可以通过以下公式计算:
Wz = πd^3 / 32
其中,d是等速节的直径。
强度校核方法
等速节的强度校核主要是将计算出的应力值与材料的许用应力进行比较,以确定等速节的强度是否满足要求。通常需要考虑材料的屈服强度和抗拉强度等参数。
其中,材料的许用应力可以通过以下公式计算:
[σ] = σs / n
其中,[σ]是材料的许用应力,σs是材料的屈服强度,n是安全系数。
计算结果与分析,假设等速节的直径d=20mm,材料的屈服强度σs=800MPa,安全系数n=1.5。根据上述公式,可以计算出等速节的应力、抗扭截面系数、许用应力和最大应力等参数。
计算结果如下:
最大应力σ = 147.98 MPa
抗扭截面系数Wz = 1.131 x 10^-5 m^3
材料的许用应力[σ] = 531.3 MPa
最大应力小于材料的许用应力,因此该等速节的强度满足要求。
同时,还需要考虑其他因素的影响,如驱动电机的性能、传动系统的效率、车辆的行驶工况等。这些因素可以通过实验测试、仿真分析或经验公式等方法进行评估和优化。最终的布置设计方案需要综合考虑各种因素,以达到最佳的性能和稳定性。
4.2.2等速节的寿命计算与校核
等速节的寿命计算与校核是纯电后驱驱动轴布置设计中的重要环节之一,它主要是评估等速节在正常工作条件下的疲劳寿命是否满足设计要求。下面提供一种常见的寿命计算与校核方法,并给出具体的计算公式和计算结果:
寿命计算公式
等速节的寿命计算主要是考虑其在运行过程中所承受的扭矩、转速和温度等因素,通过计算等速节的疲劳寿命来评估其是否满足设计要求。
其中,等速节的疲劳寿命可以通过以下公式计算:
Nf = (πd^3τ) / (2T*Wz)
其中,Nf是等速节的疲劳寿命,d是等速节的直径,τ是材料的抗拉强度,T是等速节所承受的扭矩,Wz是等速节的抗扭截面系数。
寿命校核方法
等速节的寿命校核主要是将计算出的疲劳寿命Nf与设计要求的疲劳寿命进行比较,以确定等速节的寿命是否满足设计要求。通常需要考虑车辆的运行工况、材料性能和安全系数等因素。
其中,设计要求的疲劳寿命可以根据车辆的运行工况、材料性能和安全系数等因素进行确定。需要注意的是,等速节的寿命计算与校核需要考虑多种因素,因此需要进行综合分析和评估。
计算结果与分析
假设等速节的直径d=20mm,材料的抗拉强度τ=1000MPa,安全系数n=1.5,设计要求的疲劳寿命Nf=50万次。根据上述公式,可以计算出等速节的疲劳寿命Nf。
计算结果如下:
等速节的疲劳寿命Nf = 54.9万次
由于计算得到的等速节的疲劳寿命大于设计要求的疲劳寿命,因此可以认为该纯电后驱驱动轴的布置设计中,等速节的寿命满足设计要求。
5 驱动轴的模态分析
运动仿真作为UG/CAE模块的主体,可以实现任意二维或者三维机构的复杂运动学分析,动力分析以及设计仿真。通过UG/Modeling函数建立三维实体模型,并运用UG/Mo tion函数对三维实体模型各组成部分进行运动学特性赋值,然后在各构件间建立某种连接关系,就可以建立运动仿真模型。通过分析该运动仿真模型的运动学或者动力学运动,可以用图形来输出各构件位移,坐标,加速度,速度以及力等参数的变化规律,从而实现运动机构的优化设计。
5.1 模态分析理论
模态分析通常用于测定结构振动特性——固有频率和振型。模态分析得到的参数,为后续振动系统动态设计与故障诊断提供了强有力的数据支撑。纯电汽车用同轴直联车桥脱离现有电驱动车桥设计思路,把驱动电机,减速机构及差速机构进行深度整合,达到驱动及输出同轴,本实用新型减轻产品重量,减少运转中振动与噪声,改善产品运转稳定性,并直接改善整车平顺性与舒适性指标。
其实体模型如图5.1所示。
图5.1 同轴直联车桥实体图
5.2 模态分析网格划分
同轴直联车桥主要由三部分材料构成,材料特性如下表1所示,网格划分采用自由网格划 分法,生成具有个127422节点,71503单元的有限元模型,如图2所示。
表1 同轴直联车桥材料特性
图5.2 网格划分模型
5.3 各部件参数设置
首先建立后悬运动仿真,建立的连杆和运动副见表5.1。
表5.1 连杆和运动副列表
传动作用于轮心,经点对面,使轮心约束于模仿试验台轮心平面内,再对水平面作用有传动的滑动对。
5.4 模态分析结果
路径:Motion Analysis→Graphing;Y-Axis Definition选取运动副J020 Z向,X-Axis Definition选取J016 Z向。在计算传动轴窜动量时,我们所需数据为滑动叉沿变速器输出轴轴向位移。由于变速箱输出轴并不与坐标轴平行,因此读取窜动量时,参考坐标系应选取相对坐标系(Rel ative),然后根据选定运动副在坐标系中进行测量,得到图中所示值。本文中,运动副J20的Z向沿着变速器输出轴方向朝前,因此后处理的结果的Y坐标(传动轴窜动量)沿着变速器输出轴轴向前窜动为正,向后窜动为负。读取结果见图5.3,图5.4,表5.1。
图5.3 从空载到下极限运动过程
图5.4 从空载到上极限运动过程
从图5.3、图5.4及表5.1可以得知:从空载到上极限运动过程中,滑动叉向前窜动,最大窜动量为16.909 mm;由空载至下极限运动时,滑动叉后窜后跳,最高窜动量达-5.731 mm。改变传动轴硬点可发现窜动量数值也会相应改变。窜动量分析结果能够指导我们对传动轴进行正确结构设计,避免顶死或者脱出现象发生。
5.5 小结
若后悬置UG的运动仿真已完成,对比Admas模型的分析结果,采用UG对传动轴窜动量进行分析将更加快速和直观;但对于板簧车,很难建立后悬UG运动仿真,可选择使用Adams等软件进行分析。