目录
第一章 绪论 2
1.1研究背景及意义 2
1.2国内外研究现状 3
1.3研究内容及方法 5
第二章 构网型变流器原理及其控制 6
2.1构网型变流器的基本控制架构 6
2.2构网型变流器控制策略 8
2.3下垂控制理论 9
2.4虚拟同步发电机控制 11
2.5 匹配控制 12
第三章关于构网型变流器的控制方案设计 14
3.1 一阶微分设计 14
3.2 实施下垂控制 16
第四章 构网型变流器仿真实验及其结果 18
4.1 Simulink 仿真平台 18
4.2 仿真实验设置 18
4.3仿真结果 19
4.3输出功率变化图 20
第五章 结论及其展望 22
参考文献 23
致谢 25
第一章绪论
1.1研究背景及意义
由于新型能源和电力电子设备得到了广泛的应用,电力系统表现出了惯性减小和系统强度降低的趋势,这导致了系统稳定性问题日益凸显。由于电力系统具有强非线性特性,导致其在动态过程中存在较大扰动甚至不稳现象。为了确保电网的稳定和安全运行,我们必须对电力系统进行适当的控制和调整,以使其达到最佳状态或尽量接近最佳解决方案。变流器是实现上述功能的主要装置之一,因此研究变流器控制策略具有重要意义。通过使用构网(grid-forming GFM)控制策略,我们可以显著提高变流器的电压和频率的稳定性,进而增强整个电力系统的运行稳定性。因此,在当前的电网中应用构网型变流器具有重要意义。至今,无论是国内还是国外的学者,都对构网型变流技术进行了众多研究,但大部分的研究都集中在探讨其工作原理和特点上,而对真实电网结构的建模和仿真研究则相对缺乏。在未来的发展中,随着智能电网建设的不断深入。考虑到电力需求的持续上升以及对环境造成的负担。因此需要开发出一种新型的变流器控制系统来满足未来发展的要求。变流器由于其固有的非线性属性和复杂的工作原理,导致其控制器的设计面临巨大的挑战。因此,随着电力电子控制技术及计算机技术的快速发展,如何利用先进的控制算法提高电力系统中的电能质量已成为当前的一个重要课题。在当前的情境下,进行构网型变流器仿真研究的核心目的是为了深化和验证对变流器控制理论的理解,进而提升构网型变流器的性能表现。通过模拟分析不同的系统参数、负载波动和工作环境等多个因素,我们可以比较和分析不同控制策略下的系统反应,从而确定最佳的控制参数和策略,以提高变流器的工作效率、稳定性和可靠性。
对于构网型变流器控制系统的仿真设计,其选题在理论与实践两个方面都具有长远和深刻的影响。本文通过建立一种基于虚拟样机技术的仿真平台,将其与传统的建模方法相结合,从而实现了变流器控制器模型的构建以及控制算法的研究。从理论角度看,这有助于加深我们对变流器控制技术的认识,并促进相关理论的创新和发展;从实际操作的角度看,这有助于提升系统的表现,减少成本的风险,并推动技术的创新与应用。因此,本文从分析当前电网结构入手,结合工程实践,探讨如何构建基于网络技术的变流控制平台。为了满足时代进步的需求,我们可以更深入地探索构网型变流器控制系统的独特性质和潜在能力,从而为技术革新和实际应用提供新的方向。
1.2国内外研究现状
在过去的十年中,风、光等新型能源通过电力电子变流器(简称为“变流器”)大量并入电网,这被视为新一代电力系统的关键技术特点之一。高比例的新能源显示出强烈的间歇性、波动性和不确定性等特点,因此其并网接入需要电源侧和负荷侧进行双向调整,这对新型电力系统提出了电力电量平衡的高度灵活性的新要求。从另一个角度看,变流器与同步发电机有所不同,它的动态行为完全由其控制策略所决定,显示出很高的适应性;此外,变流器还可以利用可再生能源发电系统所产生的无功电能作为自身有功能源补充[1]。另外,由于功率半导体器件的过载限制,变流器不能像同步发电机那样提供数倍于其规定电流的故障电流。因此,在高频率变化时,传统电力系统中存在着“低频振荡”问题,而新型电力系统则面临着“高频波动”的风险。上面提到的这些差异为新型电力系统的平稳运作带来了前所未有的考验。
在当前的实际工程应用中,广泛采用的变流器是跟网型(grid-following)控制架构,这意味着使用矢量电流控制来调节变流器的输出电流,从而进一步控制输入到电网的有功和无功功率。为了提高系统稳定性和可靠性,需要对变流器进行无功补偿以维持直流母线上稳定的母线电压。通过同步采集并网点电压,并利用锁相环(phase-locked loop PLL)技术,确保变流器与电网的同步运行[2]。这种方式虽然能够获得较好的跟踪效果,但是会产生较大的稳态误差和暂态误差,导致控制系统不稳定,甚至无法工作。鉴于跟网型变流器在本质上被设计为电流源,它的稳定运行依赖于系统内的电压源为其并网点提供电压。当系统出现故障时,电压源会对变流器造成影响。在传统的电力系统里,这个电压源是由同步发电机和同步调相机共同提供的。在此背景下,同步发电机/同步调速器作为一种典型的非线性负载,可以有效提升系统稳定性和功率平衡能力。但是,当新能源发电设备通过变流器大量并入电网时,同步发电机在整个系统中所占的比例逐步减少,这进一步导致电网的稳定性逐渐减弱,为后续的变流器稳定工作带来了巨大的考验。此外,当变流器都采用跟网控制后,会使整个电力系统出现频率偏移问题,甚至造成严重故障。值得注意的是,在未来的新型电力系统中,如果所有的发电单元都是由电力电子变流器组成的,并且变流器都采用了跟网型控制,那么系统中就不会有电压源来构建电压,这显然意味着该系统无法正常工作。
因此,为了确保在未来电力电子高渗透环境下新型电力系统能够稳定运行,有必要将部分变流器调整为电压源,而不是电流源。为此,研究了基于可控整流和逆变技术的新型电网接入方式———构网型变流器。借助于同步发电机的物理原理,不同的学者在不同的时间段和不同的视角,提出了构网型(grid-forming)变流器这一新概念[3]。由于这些变流器本身所固有的结构特点以及其输出与输入间存在耦合关系,导致它们在控制策略方面具有较大差异。虽然不同的文献在描述构网型变流器控制架构的具体实施细节时存在差异,其直流侧与交流电之间存在能量交换和传递关系,从而可利用这种能量转换能力为负载供电。(2)实现同步的方法是通过调整变流器的输出功率(或直流电压),而不是仅仅对外部交流电网电压进行采样。上面提到的两种核心控制理念确保了构网型变流器能够在不需要外部交流系统的前提下,独立地构建交流侧的输出电压。因此,这种构网型变流器既可以在孤岛模式下工作,也能与微弱的电网进行连接。
鉴于上述的优点,构网型变流器在电力系统中的使用在最近几年内受到了广大的瞩目。我国也正在积极发展和研究这一新型变流器技术。除了少数的试点项目,已经有若干国家开始规划构网型变流器在大型工程中的应用。从目前的研究现状看,对于大型并网系统而言,采用传统控制策略是无法实现对其稳定运行的有效保障。德国电网公司Amprion指出,为了实现2035年德国电网中构网型变流器占比达到35%的目标,从2021年开始,每年新接入电网的变流器中有超过50%需要使用构网型控制[4]。可见,构网型控制对于实现未来电网安全稳定运行具有重要意义。由于受到外界干扰和自身参数变化等因素的影响,目前还没有一套完善的方法来研究构网型变压器的动态性能及稳定运行条件。因此,为了为构网型变流器的大规模工程应用提供坚实的理论基础,我们需要在不同的电网强度和不同的电网扰动情况下,对构网型变流器进行全面的稳定性分析。
尽管构网型变流器的控制理念受到了同步发电机物理机制的启发,但其稳定性分析并不能简单地应用同步发电机稳定性分析的相关结论。这主要是因为,在构网型变流器通过控制有功功率同步的过程中,其控制参数(例如虚拟惯性、虚拟阻尼等)并没有像同步发电机那样受到物理限制,因此具有更高的灵活性。因此,在研究其鲁棒稳定特性的基础上,提出一种基于等效惯量和附加动量的简化模型分析方法。这种灵活性显著提高了稳定性分析的难度。为了研究此类系统稳定性问题,本文首先推导出一种新的简化模型——双轴旋转坐标系下的双自由度等效阻抗模型。与同步发电机相比,构网型变流器在通过控制直流电压同步的过程中,其数学模型结构存在显著的差异。具体来说,它增加了一个从有功功率到直流电压的动态环节,这一额外的动态环节可能会对构网型变流器的整体稳定性造成不良影响。另外,随着电网规模不断扩大,系统发生短路故障后,电压跌落对变流器造成的危害越来越严重。鉴于构网型变流器的过流能力受限,在出现故障时通常需要进行限流操作,这导致其在穿越故障时的动态反应与同步发电机存在根本的区别。本文提出的方法不仅考虑了系统参数变化对其稳态特性的影响,而且还将上述两种因素进行综合考虑,从而得到更为合理的结果。这为其进行暂态稳定性的分析带来了前所未有的挑战。
现有的关于构网型变流器的研究文献主要集中在总结其各种控制实现方法,而没有将焦点集中在变流器自身的优化设计上。因此,在这样的背景下,为了更好地适应时代的发展,本文对该变流器进行了仿真优化设计,目的是使其能够更好地发挥其功能。
1.3研究内容及方法
本研究对前述问题中的构网型变流器策略进行了深入的探讨和分析。并针对电网电压不平衡情况下,提出了一种新型的基于电流控制的控制策略,通过仿真验证该方法在系统稳定运行时具有良好的性能。以下是论文的核心内容:
首先,我们分析了构网型变流器的工作原理和控制方法,接着探讨了当前的构网型控制策略
此外,还对下垂控制、虚拟同步发电机控制以及匹配控制进行了详细的阐述。最终,我们进行了仿真试验并进行了深入的分析与总结。
第二章构网型变流器原理及其控制
构网型变流器被定义为一种依赖于功率方向的电压源装置。其基本结构包括输入整流模块、逆变控制模块和输出阻抗变换模块等三个部分。从其外部属性来看,它可以被视为一个电压源,在特定的范围内能够提供稳定的电压输出。因此,可以说其具有典型的可控和可重构性质。与传统的网型模式相比,构网型模式下的变流器不需要依赖电网电压来调节其输出功率,而是直接建立电压,这种特殊的操作方式为变流器提供了更大的灵活性。由于具有上述优点,因此构网型变流技术近年来得到迅速发展。构网型控制的关键环节是功率控制环,这个环节也是实现构网功能和区分不同构网型控制的重要环节[5]。本文首先介绍了几种常用的能量管理策略,然后提出一种基于自适应滑模观测器的构网型控制策略,通过对控制器参数的整定,可以得到不同类型的系统模型。通过构网型模式,我们可以独立地确定参考电压和频率,而无需与电网的电压和频率锚定。同时由于其采用了可控开关器件,使得变流器具有较高的功率密度。因此,即便是在与大型电网断开连接的情况下(也就是孤岛模式),变流器依然能够维持其稳定的工作状态。
2.1构网型变流器的基本控制架构
图2.1展示了构网型变流器的核心控制结构以及相应的等效电路示意图[6]。图中所示的可控电压源即是本文中提出的“虚拟电流”概念,它可视为一种新的可控整流元件,并将被应用于构网系统之中。从下面的图示中,我们可以明确地看到,构网型变流器在本质上可以被视为一个包含内阻(Zo)并且其幅度和相位都受到控制的受控电压源。因此,可将其视作为可控电压源来进行研究。该电压源的振幅是由无功功率控制来确定的,而其相位控制(同步)则是根据变流器的直流侧是否存在稳定的电压源来选择不同的控制策略:
(1)当构网型变流器的直流侧有一个恒定的电压源存在时(例如储能变流器、定功率的柔直换流站、部分直流电压由前级变换器控制的光伏和风电变流器等[7]),输出电压的相位是由有功功率控制决定的[8],这与图1(a)中的“基于有功功率同步”相对应”。
(2)如果在构网型变流器的直流侧没有固定的电压源(例如具有固定直流电压的柔直换流站,以及部分直流电压不受前级变换器控制的光伏和风电变流器等[9]),那么就需要满足特定的要求
构网型变流器自身负责对其直流电压进行精确控制。因此,在前述的工作条件下,构网型变流器的输出电压相位是由直流电压来控制的[10],这与图(a)中的“基于直流电压同步”相对应”。
(a) 基本控制架构 (b) 等效电路图
图2.1 构网型变流器
基于有功功率/直流电压这两种主要的同步控制策略,我们可以根据构网型变流器使用的控制器特性,对其同步控制框架进行更深入的分类,如下图展示。对于上述两种控制策略而言,它们都存在一个共同问题就是无法解决电压波动和电网不平衡所带来的影响。以基于有功功率同步的构网型变流器为研究对象,当考虑使用不同的有功功率控制器(线性/非线性)时,我们可以进一步将其分类为下垂控制、功率同步控制、虚拟同步发电机控制和虚拟振荡子控制等几种[11]。其中对于电压外环电流内环解耦控制策略以及功率前馈控制策略分别对应于上述四种拓扑结构下的相应控制目标和具体实现方法。需要特别指出的是,尽管在构网型变流器的同步控制中并不需要加入额外的锁相环,但在某些控制实施方案中,锁相环的应用仍然存在。然而,这里引入锁相环的主要目的是为了辅助实现频率检测和动态性能提升等控制功能,这与依赖锁相环进行同步的网型变流器有着根本的区别[12]。
图2.2 构网型变流器同步控制架构的分类
2.2构网型变流器控制策略
变流器的并网结构如图展示,而跟网型控制则是通过PLL来获取相位,正如图展示的那样。采用构网型控制方法时,我们不需要依赖PLL,只需通过功率的差异流动来达到电压和频率的控制,正如图展示的那样。本文主要讨论了在三相四线制系统中采用构网型控制技术时需要解决的几个问题,即如何确定各支路电流之间的关系以及如何保证各相交流母线电压和相电流均平衡等。构网型控制的关键环节是功率控制环,这个环节也是实现构网功能和区分不同构网型控制的重要环节。由于功率有差流特性,不同类型的控制方式对其产生影响。基于功率控制环节的不同,我们可以将构网型控制进行分类
包括下垂控制、VSG控制以及虚拟振荡器控制在内。在此基础上对同步发电机进行了分析和研究,总结出各种控制策略的优缺点及适用范围。在这其中,下垂控制和VSG控制的特性与传统的同步机有许多相似之处,它们是最常用的两种网络控制策略[13]。
图 2.3 不同控制器的结构
2.3下垂控制理论
图2. 4标准的下垂控制理论图示
在此过程中,利用功率公式对输入到逆变器上的有功功率、无功以及直流电压等相关参数进行了推导和分析。然后,计算实际输出功率与预先设定的功率之间的差异,并利用下垂系数来实现增益。在此基础上,对该比例放大器中各元件参数做相应调整以使各个部分都能工作在最优状态下。接下来,我们将这些增益与特定的频率和电压做差值操作。最后,我们把这些数据输入到电压合成的步骤中,并给出了参考电压值U。在本文中所采用的控制策略为基于电网侧电流指令信号对有功功率和无功功率进行解耦控制。仿真结果表明,在不同情况下,该控制策略均能有效地抑制系统中的低频振荡。但是,在无功功率电压控制环节,无功功率0的精确追踪变得困难,这导致了系统的无功分配出现不平衡,从而增加了系统的环流。另外,由于电网存在谐波源以及负载非线性等原因,使得系统的稳态运行特性变差。电压的幅度、功率的角度以及阻抗的波动都可能引发有功和无功功率之间的相互作用,这对系统的稳定性产生不利影响。为了克服这一问题,必须引入电压调节装置。因此,在本研究中,我们引入了下垂控制器,并在该控制器内部加入了一个微分环节,目的是为了解决在两个电压变流器作用下,两个电压分别上升的问题:
(1)
(2)
与式(1)和式(2)比较:
(3)
将式(3)推广到多台逆变器,基于无功份额的 下垂控制“通信机制”为
(4)
同理,基于有功份额的下垂控制“通信机制”为
(5)
本文主要讨论电压控制,以无功功率为例,将 Us 视为常数,则无功电流 Ire 可表示为
(6)
式中:Ire0代表无功电流的即时设定值;kre代表电压的系数。
总结来说,尽管下垂控制在使用上既简单又高效,但由于微电网的结构相对复杂,变流器的输出电压仅为局部成分,具有分散性,并且其中的等效阻抗存在差异,这导致无功功率分布不均,从而在电力系统中引发电压下降[14]。为此提出一种基于同步发电机无功补偿与负荷侧电流反馈相结合的控制策略来解决上述问题。这一控制策略独立地管理输出的有功和无功功率,从而省去了机组之间的协同工作,同时其控制方式也相对简洁且稳定。同时下垂控制策略能有效提高整个微网运行的经济性,在实际应用中有很好的发展前景。
2.4虚拟同步发电机控制
在实际运行中,由于电网结构以及负荷分布等方面都存在一定的不确定性因素,这也就使得电力系统在运转过程中会有很多不确定影响因子产生,从而造成系统出现故障时不能及时得到有效控制。在VSG控制策略的支持下,并网逆变器有能力参与到电网电压和频率的调整过程中。本文主要针对于基于虚拟同步机控制策略的光伏并网发电系统进行分析与研究。图2.5(a)展示了在VSG控制下的有功-频率调整过程,该过程模拟了同步发电机的一次频率调整。通过引入一个新的控制变量——虚拟的转动惯率和阻尼系数来描述系统的非线性动力学行为。由于存在虚拟的转动惯量和阻尼系数,VSG获得了与同步发电机类似的特性,这为保持系统稳定性提供了必要的惯量和阻尼系数,进一步强调了构网支撑控制在实现等效惯量和系统强度支撑方面的重要性。
图2.5 虚拟同步发电机控制
在暂态状态下,输出的功率超过了预定的参考值,这其中的功率差异是由频率辅助服务所提供的,而这部分功率通常是由电池储能来供应的。稳态时,有功与无功都被限制在一定范围内。VSG调整输出电压的方法与传统的同步发电机存在一些差异,VSG是通过检测无功功率和电压来进一步控制输出电压的。此外,为了实现电网故障期间稳定运行,还可以采用直流母线电压前馈补偿技术。从一个更广泛的视角来看,以VSG控制策略为中心的网络控制方法是可以安装在网侧转换器上的。该技术可将来自于电网的电能转换成所需要的功率,从而使用户获得最大程度的节能效果。由于旋转惯性和阻尼成分的增加,系统的稳定性有了明显的提升。
2.5 匹配控制
匹配控制可以被认为是一种对VSG进行进一步拓展和发展的控制手段。由于它可以通过调节直流电容电压来达到对电网有功无功进行补偿的目的,故在电力系统中得到了广泛应用。通过改变直流电容电压,实现了有功、无功解耦控制及转速调节。鉴于直流电容在交流电网中无需消耗无功功率,这种创新的控制方法能够增强系统的稳定性并减少励磁电流产生的谐波污染。另外,由于交流电网具有良好的可控性能以及易于实现有功、无功解耦等优点,使得其成为一种非常有前景的调速方法。
图2.6匹配控制
在这之中,涉及到的是直流母线的电容电压;仿真结果表明,该方法可以实现交流侧与电网之间有功功率以及无功功率的解耦传输。u和n是匹配的系数,本文还讨论了如何利用该方法实现变速恒频风力发电并网控制技术。同时,直流母线电压的波动并不会导致两个系数的改变,因此u和n被认为是常数系数。该方法具有一定的灵活性和适应性,能有效地解决电网阻抗失配问题。通过将直流母线电容电压与之相乘,我们能够分别确定频率和参考电压的幅度[17]。该方法不仅适用于单相系统,而且也适合于三相交流系统中。仿真结果证明了上述理论分析的正确性。基于此,我们提出了一种新颖的风能发电并网控制方法,该方法基于有功与无功的解耦技术。该方法利用有功、无功功率之间存在相互耦合关系以及电感电流与电网侧交流母线电压间也具有相互影响作用这一特点来解决上述问题。
第三章关于构网型变流器的控制方案设计
从其工作原理来看,在下垂控制方面,该方法的优势在于反应迅速,相对简洁。但是,下垂控制也有其局限性,它缺少同步机的惯性和阻尼属性,这可能会引起系统的频率波动。针对这一问题,采用直接电流控制方式进行改进。相应地,虚拟同步发电机的控制方法弥补了先前存在的缺陷,针对这些不足提出了基于有功无功解耦的动态矢量调制策略,该方案可有效解决上述问题,同时能够获得更高的效率。匹配控制是基于VSG控制原理进行的调整和修改,它无需在时间尺度上对交流量和直流量进行严格的独立控制,仅需对直流母线电压进行测量,这也赋予了它低时延的优点[15]。本文提出了一种基于虚拟同步发电机的新型电网无功补偿控制器设计方案,并进行仿真验证。通过使用直流电容电压来替代同步机中转子的功能,我们可以实现功率与电压的同步,从而实现直流电压的可控性。同时还提出了一种新的控制策略,即基于电网侧无功平衡来确定虚拟同步发电机控制参数。从宏观角度看,目前存在多种构网型控制技术路径,其中以虚拟同步技术为核心的路径占据了主导地位。本文对该策略进行研究分析,提出一种基于多变量预测控制策略的方案。在电力系统中,它们都具备功率分配的机制。
3.1 一阶微分设计
在这次的控制策略中,我们选择了三相电压源作为控制手段,其主要目标是将电压设定为一个固定值,这样变流器就无法进行并联操作,因为电压与相位之间的细微差异可能导致系统的大规模循环[16]。为了使三相逆变器能够正常运行,在不影响交流侧电流平衡的情况下,通过调整开关频率来达到控制目标。下垂控制旨在确定电压的基准u*值。本文主要针对构网型变流器进行研究。通过动态地调整电网的电压,我们可以实现构网型变流器的功率分配,从而确保电网电压的稳定性。本文对以上两种控制方式进行了研究分析并给出相应的结论,为今后进一步深入研究奠定基础。在dq旋转坐标系中,构网型变流器的控制策略如图展示。
图 3.1 三相对称系统构网型变流器控制方案
由图可知,不同于常规三相构网型变流器,在下垂控制器中引入了一阶微分单元。在三相对称系统中,可以实现电流从三相平稳坐标系到旋转坐标系的坐标转换:
假设 则
图 3.2 一阶微分控制图
由图可知,引入一阶微分单元后,电压对无功电流的下垂控制与无调速器的同步发电机的下垂控制相似。M为发电机系统的一阶微分常数,D为发电机系统的阻尼系数,N为发电机系统的控制系数,它们共同决定了对负载变化的响应速度。
选取M=1,D=10,N=0.6与M=2,D=10,N=0.61,奈奎斯特(Nyquist)曲线如下图所示。由此可以分析出当系统的一阶微分常数越大,控制系数越高,系统稳定性更高。
图 3.3引入一阶微分后的 Nyquist 曲线图
3.2 实施下垂控制
正如前文提到的,构网型变流器的下垂系数与同步发电机的负载阻尼常数相对应,这一系数展示了每当电压变动1%时,负载变动的比例。因此,如果要使系统在电网侧实现无功补偿或谐波抑制,必须确定其最佳参数。只有当我们深入掌握垂向系数的物理含义时,我们才能确定垂向系数的最佳数值。本文从理论和实验两方面研究了这一问题,给出了一个简单实用的计算方法。下垂控制的特性可以从图中看出。
下面的图示展示了无功电流如何随着电压的下降进行调节,存在一个由构网型变流器的额定值所确定的物理界限,即1.。这个极限是由电网电压和变流器容量来确定的。电网的电压也被限制在Umin Umax的区间之内。因此,如果要使系统达到稳定状态,必须保证无功电流不超过这个限度。因此,电压的下垂系数是由无功电流所定义的:
图3.4下垂控制特性
当无功电流 Ire>0时,构网型变流器工作在电容区;当有功电流 Ire<0时,构网型变流器工作在电感区。
第四章 构网型变流器仿真实验及其结果
4.1 Simulink 仿真平台
随着电力电子设备在日常生活中的广泛应用,电力电子设备的容量和系统的复杂性都得到了显著的提升。因此,对系统的研究、开发和测试手段的要求也日益增加。目前,主流的研究方法包括软件模拟、实体实验以及半实体仿真实验。其中,以硬件电路为基础建立起来的数学模型已经成为电力系统中广泛使用的重要分析与控制平台。Simulink是由MathWorks公司研发的一款以模型为基础的设计工具,专门用于动态系统和嵌入式系统的建模、仿真以及优化工作。它以模块化思想为基础,具有强大的数学运算能力和良好的人机交互界面[18]。Simulink为用户提供了一系列丰富的模块库和功能,这有助于他们迅速地构建各种不同类型的系统模型,包括但不限于线性系统、非线性系统、连续系统以及离散事件系统等。
4.2 仿真实验设置
我们在Simulink仿真平台上构建了一个如图展示的微电网模型。该系统包括微源和负荷两部分。为了减少仿真平台在初始化阶段因数值问题导致的误差,本研究的所有实验都是在仿真平台稳定之后进行的。通过对各节点电压、电流等参数变化情况分析,验证了系统能够满足实际运行要求。粒子群优化算法的规模定为50,迭代的次数是25次,而仿真所需的时间为2.4秒。
图4.1 仿真模型
4.3仿真结果
在模拟PCS2的SOC值达到特定阈值时,Pr ef2等于25kW,P ref1等于75kW,Q ref1等于Q,ref2等于Q,load等于30kVar。说明在此情况下,电压、电流强度都是一个连续变化的量,这就可以用电路中某一时刻的功率来表示其大小了。如图展示的是电流与有功波形:
图4.2电流波形图
从图4.2可以观察到,在t1时刻,PCS2根据控制需求减少了输出功率的有功给定值,达到了25kW。此时,PCS1的电流峰值上升至161A,功率大约为74.929kW,而PCS2的电流峰值为53.5A,功率大约为24.899 kW。在功率发生变化的情况下,两台PCS对PCC点的频率检测会出现时间序列。
功率的变化过程如图4.3所示: