不平衡负荷下三相逆变器孤岛运行控制(源码+万字报告+部署讲解等)

目录
摘要 1
Abstract 1
1 绪论 2
1.1 研究背景及其意义 2
1.2 国内外研究现状 3
1.3 研究内容 4
2 微电网三相逆变器基本控制策略分析 4
2.1引言 4
2.2 微电网拓扑结构 5
2.2.1 微电网类型 5
2.2.2 微电网运行模式分析 7
2.3 新型双环电压–电流下垂控制法原理 8
2.3.1 逆变器分析及设计 8
2.4 V/F控制策略 10
3逆变器控制部分设计 11
3.1 逆变器 PWM 开关信号 11
3.2 电压瞬时值反馈单环 PID 控制 12
3.3 电压瞬时值反馈单环 PID 控制的参数选择 14
4 不平衡负荷下三相逆变器孤岛运行控制仿真实验及其结果 15
4.1 MATLAB Simulink 仿真模拟 15
4.1.1 Simulink 电路图及配置说明 15
4.1.2“PWM Generator”模块内部元件波形 16
4.2 空载仿真实验 16
4.3 线性负载仿真实验 17
4.3.1 持续性线性负载仿真实验 17
4.4 非线性负载仿真实验 20
参考文献 26

1 绪论
1.1 研究背景及其意义
这篇文章所进行的研究在理论和实践上都具有巨大的价值。在理论意义方面,三相逆变器是实现配电网电压无功解耦控制的关键设备之一。从理论角度看,对不平衡负荷下的三相逆变器孤岛运行控制策略进行深入探讨,有助于进一步丰富和完善逆变器的控制理论体系,为电力系统的稳定运行提供坚实的理论基础。此外,由于三相逆变器本身结构简单,价格低廉,因此其控制技术已经成为电力电子技术领域一个非常活跃的研究课题。在实际应用中,随着分布式电源和微电网技术的迅速进步,三相逆变器在电力领域的使用变得日益普遍。因此,研究不平衡负荷下三相电压型逆变器的孤岛运行策略对于改善电能质量、降低系统成本以及促进新能源发电技术的进步都有着十分重要的意义。对三相逆变器在不平衡负荷下的孤岛运行控制策略进行研究,将有助于提升电力系统的供电质量和稳定性。特别是在孤岛运行模式下,该策略能够有效地解决负荷不平衡的问题,减少停电等意外事件的发生,从而确保电力系统的稳定和可靠运行。因此,本文对于光伏并网系统和并网风力发电系统的功率预测算法进行了深入的研究。此外,这篇文章的研究成果也将有助于促进相关行业的进一步成长。因此,三相逆变器孤岛运行策略具有重要的理论意义和现实意义。通过对逆变器控制策略的优化,不仅可以提升其工作效率和稳定性,还能减少运营维护的总成本,从而为企业创造更多的经济收益。因此,本文的研究成果对于促进我国电力行业的可持续健康发展具有重要意义。此外,这也为相关领域的研究人员和技术专家提供了宝贵的参考资料和经验。
1.2 国内外研究现状
鉴于微电网中的大部分微电源都属于可再生能源类型[1],它们的特性决定了微电源必须通过电力电子转换器连接到微电网[2]。其中,三相逆变器是最常见的设备,因此在微电网的各种运行模式中,研究三相逆变器的控制策略变得尤为关键[3]。三相逆变器作为一种将交流电转换为直流电压并实现能量传输与利用的装置,它可以分为交流侧电路及直流侧电路两部分。三相逆变器主要采用PO控制、V/f控制和下垂(倒下垂)控制作为其控制策略[4]。1)PO控制,也称为恒功率控制,是根据功率指令或执行最大功率跟踪,输出指定的有功功率和无功功率。本文首先通过对比传统下垂控制器与新型下垂控制结构的优缺点,结合当前主流的控制技术,给出一种适用于中低压配电网电压、电流均不对称条件下的新型下垂控制策略。2)V/f控制,也称为恒压/恒频控制[5],涉及三相逆变器根据负载变动来调整交流侧输出的功率稳定电压和频率,确保其保持在规定的额定值。3)下垂控制,是根据各个分布式电源的特定下垂曲线,根据负载端功率的变化来调整相应的输出频率和电压,以实现负载功率的分配。而倒垂控制则是根据预设的倒垂曲线来调整分布式电源输出的有功功率和无功功率,以达到稳定频率和电压的目标[6],从而实现负载功率的有效分配。另外对于负载不对称情况下系统的稳定问题也有一定的改善。在这其中,PQ控制和V/控制的研究理论已经相当成熟,相应的研究成果也相当丰富。这两种控制策略在微电网的运行控制中也得到了广泛的应用。国内外的文献也从PO控制和V/f控制的基础理论出发,提出了一系列改进型的控制理论,以实现更好的控制效果[7]。为了使系统稳定运行,文中将基于能量平衡原理的下垂控制技术与基于节点导纳矩阵的潮流算法相结合,提出了一种新型的无功优化方法。该文献深入探讨了下垂控制在中低压电网和高压电网中的应用差异[8],并为其应用中的不足提供了针对性的优化建议。另外,本文还针对分布式电源接入后系统可能出现的扰动问题给出了一种基于状态观测器的前馈补偿策略。文献中综合了RX特性在不同电网等级中的差异性,以及不同下垂斜率对控制系统稳定性的影响,并重新设计了新的下垂特性曲线[9]。这样,即使电网电路是阻性或阻感性的,也能很好地实现P-fO-V的解耦控制,解决了传统下垂曲线只能在线路呈感性时才能实现P-f/O-V解耦控制的局限性。本文研究了基于多逆变器并联系统的无功优化方法。文献中提到的功率控制方法融入了虚拟电阻的思想[10],并全面地考虑了阻抗压降和分布式电源本地负荷的效应。本文还研究了不同拓扑结构下基于双闭环控制策略的光伏并网技术,分析其工作原理和特点。在低电压网络中,通过引入虚拟电阻和感性阻抗,可以有效地避免有功功率与无功功率之间的耦合。此外,这种控制策略还通过观察阻抗压降来增强对无功功率的控制能力。该策略首先将逆变电路等效成一个串联网络,然后在其上附加一个虚拟阻抗来补偿输出端负载变化引起的电容电压波动。最重要的一点是,在实时监测无功功率偏移的基础上,补偿分布式电源的本地负荷需求[11],这样可以提高无功功率控制的精度[12]。由于逆变器之间存在着非线性耦合作用,导致逆变器间输出功率不平衡。考虑到微电网中各微源间的相互关系[13]可以被转化为逆变器的并联关系[14],我们采用了PO控制与有功功率[16]-电压控制相结合的有功-频率下垂特性控制方法来对微电网进行管理[17],从而增强了微电网的整体安全性和稳定性[18]。因此,为了进一步提高功率分布均匀性,必须进一步降低逆变器开关频率。在多逆变器并联系统[19]中,我们采用了传统的下垂控制方法[20],并考虑到逆变器[21]输出阻抗对控制系统性能的影响[22]。通过引入感性虚拟阻抗,我们提出了一种适用于微网多逆变器并联的电压电流双环下垂控制策略[23]。在这其中,通过引入虚拟阻抗,使得输出阻抗完全由滤波电感值所决定,进而降低了逆变器输出电阻对系统性能的不良影响[24]。该文献介绍了一种功率下垂解耦控制策略,该策略能有效地消除并联系统中的误调节问题,但对于解决功率分配不均的问题并没有显著效果[25]。在文献中,通过在下垂控制策略中加入虚拟阻抗环,成功地减少了由于逆变器参数差异导致的输出内阻抗不一致,从而提升了均流控制的准确性,并有效地抑制了由多台DG并联引发的环流现象[26]。
1.3 研究内容
在分布式电源系统中,通常使用传统的“功率–电压–电流”三环下垂控制器,该控制器不需要互联线,以实现并联系统之间的功率均衡。然而,使用三环下垂控制器不仅使控制器变得复杂,还会受到连线阻抗阻感比的严重影响。当并联系统发生故障时,由于线路电阻对短路电流的限制作用,使得传统功率下垂控制策略失效。特别是在那些线路较短、阻抗较低的微电网系统里,过低的连线阻抗可能会对功率的均匀分配产生严重的负面影响,甚至可能引发系统的不稳定性。此外,目前大多数学者都认为传统三环下垂控制只能适用于负载为纯电阻性和电容性负荷时的串联或并网运行。因此,我们设计了一种以虚拟阻抗为基础的“电压–电流”双环下垂控制策略,即使在连线阻抗极小且不对称,以及传统功率下垂控制方法无法稳定运行的情况下,该方法依然能保持优良的电流均分性能。同时利用等效电阻和电容作为负载调节装置,以改善传统功率下垂控制对母线负荷突变时难以快速跟踪的问题。与传统的三环下垂技术相比,这种方法在稳定性、动态反应速度和实施简易性上都展现出了明显的优势。同时针对不同负载率和运行工况下,提出两种控制策略来提高系统可靠性。基于理论分析,我们进行了实验性的研究,并通过与三环下垂控制策略的比较,证实了双环下垂控制方法的实用性。
本研究的目的是探讨在不平衡负荷条件下,三相逆变器如何实施孤岛运行的控制策略。通过深入分析不平衡负荷下单相并网逆变器及三相并联逆变器的控制方法与特点,提出一种基于电压外环电流内环的并网方式以及相应的控制参数设计原则,为进一步改善系统性能提供依据。首先,我们将对三相逆变器的核心工作原理和操作方式进行深入研究,以更好地理解其在电力系统中的关键角色和价值。其次,结合电网电压定向矢量控制方法以及传统锁相环技术,设计出一种新型的三相逆变器拓扑结构。基于此,我们探讨了孤岛工作模式下三相逆变器的工作特性,并分析了负载不均衡对逆变器操作的潜在影响。其次,详细介绍了几种典型的控制方案,并进行对比。下一步,我们将专注于不平衡负荷的场景,探讨高效的控制方法。这可能涉及到开发一种创新的控制策略,通过调节逆变器的输出电压和频率,确保其在不均衡的负荷条件下依然能够稳定工作。另外,为了解决负载扰动导致逆变器输出功率波动较大问题,提出了基于前馈控制与反馈线性化相结合的方法来改善系统动态响应性能。此外,我们也在思考如何调整逆变器的参数配置,以增强其在孤岛模式下的工作效率和稳定性。除此之外,我们还计划通过模拟实验来证实我们提出的控制策略是有效的。本文最后研究了光伏并网发电系统的并网电流跟踪控制问题。我们利用MATLAB/Simulink等工具构建了三相逆变器的仿真模型,模拟了孤岛运行和负荷不平衡的情况,观察了逆变器的运行状态,并评估了提出的控制策略的性能。
2 微电网三相逆变器基本控制策略分析
2.1引言
在微电网的实际操作中,控制问题被视为需要解决的核心难题之一。微电网作为一种新型电力系统,其主要特征就是将多个独立发电单元和储能系统集成到一起并接入配电网。在微电网的负荷规模或网络架构发生改变的情况下,有必要在微电网的不同运行模式中对各类分布式电源实施有效的管理和控制,以确保满足电能质量的负荷需求。目前对微电网中的分布式发电技术还缺乏全面而深入地研究和探讨。关于微电网的控制问题,已有的研究文献为微电网在不同的运行模式下对分布式电源提出了不同的控制策略建议。例如,在逆变器并网时,建议使用PQ控制策略;在孤岛运行时,推荐使用V/f控制;而在多逆变器并联的情况下,建议采用下垂控制策略。在真实的微电网环境中,需要考虑的变量众多,因此,根据具体的实际需求,我们需要灵活地采用合适的控制策略,以实现各种控制目标,并确保微电网能够稳定运作。此外,由于目前研究人员所掌握的相关知识较为有限,无法全面了解微电网的整体结构和工作原理,从而影响了对微电网进行合理设计与有效应用。因此,我们对微电网的核心控制策略进行了深入探讨
这显得特别的必要。对三种典型的微网控制策略进行了分析和比较。本研究根据微电网分布式电源的各种运行模式,选择了相应的控制策略,并为这些策略提供了控制器的设计和分析手段。在微电网的并网运行模式中,我们选择了在aB静止坐标系下,基于并网电流外环电容电流内环的双电流闭环控制策略。而在微电网孤岛运行模式中,我们选择了在aβ静止坐标系下,基于电容电压外环电感电流内环的电压电流闭环控制策略,这确保了微电网在这两种模式下的稳定和可靠运行。
2.2 微电网拓扑结构
2.2.1 微电网类型
1.直流微电网
直流微电网是一个由直流母线组成的微电网系统,其中分布式电源(DG)和储能装置的直流负荷通过DCDC与直流母线直接相连,而直流母线则通过逆变器与大型电网和交流负荷连接。本文将对其运行模式进行分析研究,并给出了一种基于下垂控制的新型直流微电网控制策略,该策略能有效地抑制系统频率波动以及提高直流电压利用率。图2-1展示了直流微电网的拓扑构造。

图2-1直流微电网拓扑结构

2.交流微电网
交流微电网由交流母线组成,并通过公共连接点(PCC)断路器进行控制,以实现交流微电网从并网状态到离网状态的无缝切换。交流微电网在运行时,可以利用直流母线电压进行能量交换。在交流微电网中,所有的DG和储能设备都直接通过逆变器与母线连接,并通过PCC与大型电网建立连接。由于交流负荷不需要特定的逆变设备,交流微电网因此成为当前微电网的主导形式,其拓扑结构图如图2-2展示。

图 2-2 交流微电网拓扑结构
3.交直流混合微电网
交直流混合微电网是一个由直流母线和交流母线共同组成的微电网系统,其拓扑结构图如图2-3展示。随着电力电子技术以及计算机技术等方面的不断发展,越来越多的新型控制技术被应用到交直流混合系统中,使得微电网能够适应多种复杂工况条件下的运行要求。通过采纳交直流混合的灵活供电模式,我们可以有效地减少投资成本和能量损失,从而实现分布式能源的最大化利用。随着智能配电网技术的发展,微电网将成为未来配电网中重要组成部分。本研究以交流微电网结构为基础,通过对DC/AC逆变器的高效控制,确保微电网在各种运行模式下都能稳定工作。同时,我们设计的控制系统展现出了出色的动态响应能力,确保微电网能够适应负荷的变化和配网的波动。

图2-3 交直流微电网拓扑结构
2.2.2 微电网运行模式分析
微电网通常有两种常规的运行模式,分别是独立运行模式和并网运行模式,微电网应该能够在这两种常态运行模式下进行可靠的转换。图2-4展示了微电网在不同运行状态下的表现以及它们之间的转换关系。

图2-4 微电网运行状态示意图
从所提供的图表中,我们可以观察到:在微电网并入电网时,它是通过离网控制方式切换到孤岛模式的。你还可以利用停运控制来切换至停运模式;孤岛运行和并网则是指将小部分或全部负荷由系统内电源供电转移至负载上,或者将一部分或大部分电力从系统外输送出去。(2)当微电网在孤岛模式下运行,它可以通过并网控制方式切换到并网模式,或者也可以利用停运控制来切换至停运模式;(3)当微电网处于停运模式时,它可以通过孤岛控制方式转为孤岛运行模式,或者利用并网控制来切换至并网模式。并网运行指的是微电网与大型电网的连接过程中发生的功率传输。当微电网中的微源输出功率不能满足负荷功率的需求时,大电网会提供电能以确保负荷的用电需求;而当微源输出的功率过多时,剩余的电能会被输出到大电网,从而实现功率的传输和交换。孤岛运行指的是微电网与大电网之间的断开,各自独立运作,与大电网没有功率交换。通过微电网中的微源和配置的储能设备相互配合,可以确保负荷的用电,同时也能保证负荷侧的用电质量,如有必要,可以切除一般负荷。
2.3 新型双环电压–电流下垂控制法原理
2.3.1 逆变器分析及设计
在低压微电网环境下,如果线路阻抗相对较低,或者在极端情况下,线路阻抗大约为0,那么传统的三环下垂控制方式在功率控制精度和系统稳定性方面将面临严峻的挑战。在这种情形下,若使用单环控制策略无法保证输出功率恒定,则需要引入新的方法来实现对输出功率的精确控制。为了克服这一难题,本研究提出了一种依赖于虚拟阻抗的双环下垂技术。该方法首先通过在三相逆变器上并联一个电感与电容组成的虚拟阻抗实现有功和无功负荷平衡,再利用虚拟阻抗计算出各节点电压幅值及相位。三相逆变器通常使用电压与电流的双环控制策略来调整输出电压,具体的控制模型可以参见图2-5。在此控制模型基础上引入虚拟阻抗概念,并给出了具体实现方案。图2-6 ur ef是电压环的参考设定;u o代表逆变器的输出电压;L、r和C是LC滤波器的关键参数;KP WM代表逆变器的等效部分;在此电路结构的基础上,通过对该系统进行仿真研究。Gu(s)和G i(s)分别代表电压环和电流环的控制器;在本文中,我们将以三相交流变频调速系统为例进行仿真。io代表逆变器的输出电流。

图2-5 双环控制原理图
1)电流环分析与设计。
首先分析和设计电容电流内环的控制参数图4为电容电流内环控制原理图。

图2-6 电容电流内环控制方框图

如图2-6所示,忽略io影响,电容电流反馈等效i0为电感电流反馈,则其闭环传函:

式中:ir ef(s)为电流环参考信号;i c(s)为电容电流反 馈信号。
当电流环控制器采用比例控制器即Gi(s) = kpi 时,式(18)等效为

关于系统带宽的定义:当一个系统的闭环幅频特性幅值下降至−3 dB时,其对应的频率范围是fb 0~fb,这个频率区间被定义为系统的带宽。通常情况下,电流环和电压环均以开断状态为主,而负载是以关断状态为主。在实际工程应用中,电流环的设计带宽通常约为开关频率的五分之一。对于一个实际电路来说,由于元件参数和负载情况等因素会导致开关频率不同,因此要确定系统的最小带宽是不可能的,只能通过调节其增益来获得较好的效果。在这篇文章中,开关的频率是fs 20 k Hz,如果选择电流的内环带宽为fi b=fs/5=4 kHz,那么kpi将等于0.603。
2)电压环分析与设计。
电压环控制方框图如图2-7所示。

图2-7 电压环控制方框图
由图2-7可得电压环闭环传函:

本文的电压环采用比例谐振控制器[ 19],其表达 式为

可得

式中:B2 = kpukpiKPWM;B1 = kiukpiKPWM;B0 = A0 = kpukpi ⋅ KP WMω o 2;A4 = CL;A3 = CkpiKPWM;A2 = kpukpiKPWM + CLω o2;A 1 = CkpiKPWMω o2 + kiukpiKPWM
为确保电压环与电流环不会互相干扰,通常的设计中,电压环的带宽远远小于电流环的带宽。在分析了电压环对电流环影响机理的基础上提出一种新的改进方法,使其与传统方法相比具有更高的效率。本研究中,电压环的设计带宽是电流环带宽的五分之一,也就是800 Hz。利用仿真软件建立了三相逆变器模型进行分析。经过精确计算,我们可以确定kp u=0.053 kiu=3.24。
3)输出阻抗分析与设计。 逆变器输出的阻抗值不仅会受到滤波器参数和线路阻抗参数的影响,而且还与所使用的控制器类型和具体控制器参数有着紧密的关联。本文在分析了三相桥式全控桥逆变器工作原理和电路特性基础上,推导出相应的数学模型。从这可以推断出系统的输出电压传输函数:

式中:

Gu r(s)揭示了输出电压如何追踪参考电压的特性;其绝对值大小与输入电压有关。Zo(s)拥有阻抗的度量单位,这揭示了随着负载电流的减少,输出电压呈现下降的模式。根据此特点,提出一种用交流采样值计算逆变器输入-输出端口之间阻抗参数的方法,并给出其具体算法步骤。在电压环的参考值被设定为零,也就是ur ef=0的情况下,采用带入式方法可以计算出逆变器的等效输出阻抗:

式中:B3 = L;B2 = r + kpiKPWM;B1 = Lω o2;B0 = rω o2 + KP WMk piω o 2;A4 = CL;A3 = (r + Kkpi)C;A2 = Kkpikpu + 1 + CLω o2;A1 = Kkpikiu + CKkpiω o2 + Crω o2;A0 = Kkp ik puω o 2 + ω o2。
2.4 V/F控制策略

图2-8 V/F控制策略
V控制策略是基于逆交器反馈电压来调整交流侧电压以确保输出电压稳定的理念,通常使用双环控制策略,其中电压外环可以保持输出电压的稳定,而电流内环结构可以迅速抵抗外部扰动。本文通过分析比较两种策略的优缺点,提出一种基于相量法的改进算法,使其更适合于三相逆变器系统的应用场合。如图2-8展示的那样,三相逆变器的输出电压和逆变桥的输出电流在经过Park转换后变为d轴和q轴的分量。这些分量与指令电压、角频率和参考信号一同,在经过P控制器和反park转换后,形成了六个驱动信号,用于控制开关管的开启和关闭。
基于前述理论,我们构建了一个包括逆变、滤波、测量和控制四大部分的封装模型,如图2-9展示,其中f、Vabc和Iabc是三相逆交器输出的频率、电压和电流的测量接口。

图2-9 具备VF功能的三相逆变器
3逆变器控制部分设计
3.1 逆变器 PWM 开关信号
在这次逆变器的仿真试验中,IGBT的开关信号是通过PWM控制策略来实现的。载波信号使用的是20kHz频率的三角波信号,其振幅范围是±1;直流侧电压和电流分别由采样电路采集,并送入到单片机中进行处理。该调制信号使用了三相对称的正弦波形,频率为50Hz,三个相位之间的差异为120°,其幅度范围是±1。通过改变调制电压波形得到不同的输出电流。在MATLABSimulink软件环境中,我们采用了一种实现方式,该方式是通过比较载波信号和调制信号来生成一组包含0和1两个电平的方波,这些方波的占空比遵循正弦波形规律进行变化。对产生这种波形的电路结构和原理作了说明。在整流桥上,三相方波形成了桥臂3个IGBT的断开信号。根据开关管的关断特性和基极驱动电压大小,计算出对应于各个相电流所需开通时间的值,从而得到相应的三个脉冲宽度因子。如果将这三个相信号进行翻相处理,它们可以形成下桥臂的3个IGBT的断开信号。由于每个开关器件都有相应的驱动信号输出,因此可以很容易地控制各个开关管的导通时间。在MATLABSimulink软件中,实际的连接电路可以参见图3-1展示。

图 3-1 MATLAB Simulink 下 PWM 控制模块电路

3.2 电压瞬时值反馈单环 PID 控制
PID控制因其简洁的结构、用户友好的操作性以及出色的鲁棒性,已经成为目前最广泛应用的控制策略。它具有良好的动静态特性,在工业过程中得到广泛应用。然而,由于PID控制不能实现对正弦指令的无静差跟踪,逆变器通常需要增加外环均值反馈,以确保系统的精确性。

对于本实验系统,采用基于极点配置的单环 PID 控制,其控制算法为


u(t) = Kp |e(t) +
L

∫ e(t)dt +Td

式中,Kp 为比例系数,Ti 为积分时间常数,Td 为微分时间常数,e(t) 为电压误
差。s 域传递函数的形式为:

由此可以得到单环 PID 的控制框图如图 3-1 所示。

图3-1 电压反馈单环 PID 控制的逆变器系统框图
闭环系统以及理想极值点的特征方程分别为
D(s) = LCs3 + (rC + Kd )s2 + (1+ Kp )s + Ki
Dr (s) = (s -sr1)(s -sr2)(s -sr3) = (s2 + 2ζrΦr + Φr 2 )(s+ nζrΦr )
MATLAB Simulink 中实际连接电路如图 3-2所示

(2.13)

图 3-2 MATLAB Simulink 下电压瞬时值反馈单环 PID 控制模块电路

3.3 电压瞬时值反馈单环 PID 控制的参数选择
即:

由上式可得理想极点的Kp 、Ki 、Kd 为:

选取期望阻尼比ζr =0.8 ,期望自然振荡频率 Φr =3500(rad / s) ,以及
n = 10 ,同时取等效阻尼电阻r = 0.5(Ω) 。则可根据已选择的滤波器电感及电抗
进行 PID 控制的参数选择,计算结果见表 2.3
表 2.3 PID 控制的参数计算结果

项目 结果
Kp 2172.12
Ki 1.84根10-4
Kd 0.071

4 不平衡负荷下三相逆变器孤岛运行控制仿真实验及其结果
4.1 MATLAB Simulink 仿真模拟
4.1.1 Simulink 电路图及配置说明
仿真实验电路图参见图 4…1.

图 4…1 仿真实验主电路接线(线性负载)

利用两个通用桥元件并联形成两台三相四线逆变器并联系统,其开关信号
由“PWM Generator”子系统产生,并联系统输出电压经LC 滤波电路加在三相对称电阻负载上,取 其负载电阻为RL = 10(Ω) 。三组电压瞬时值反馈单环 PID 控制模块的输入信号 经可控电压源反馈回系统,其中的闭环传递函数环节为“PID”子系统,该子系 统的内部电路参见本报告第二部分。左上角为电力系统分析用“Powergui”模
块,可通过其对波形进行 FFT 分析。

4.1.2“PWM Generator”模块内部元件波形
本仿真实验中“PWM Generator”模块中含有三相正弦信号和高频三角波信

号,其波形图见图 4…2及图 4…3。

图 4…2 三相正弦信号波形

图 4…3三角波信号

4.2 空载仿真实验
在线性负载实验电路图中,将三相断路器设置为常开,即可得到空载情况
下电压及电流的波形如图 4…4所示。

图 4…4 空载电压电流波形
对空载时的电压波形进行 FFT 分析,其结果如图 4…5 所示

图 4.5 空载下电压波形的 FFT 分析
可见其THD = 0.95% < 3% ,符合课题要求。

4.3 线性负载仿真实验
4.3.1 持续性线性负载仿真实验
在线性负载实验电路图中,将三相断路器设置为常闭,即可得到线性负载
情况下电压及电流的波形如图 4.6所示。

图 4.6 持续性线性负载电压电流波形

对线性负载时的电压波形进行 FFT 分析,其结果如图 4.7 所示。

FFTanalysis
Fundamental (50Hz) = 559.9 , THD= 1.00%
Mag (% of Fundamental)
0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency (Hz)
图 4.7 持续性线性负载下电压波形的 FFT 分析
可见其电压波形THD由0.95% 上升为1.00% ,仍符合要求。

(1)突加线性负载仿真实验
在线性负载实验电路图中,将三相断路器初始状态设置为开断状态,并设 定合闸时间tc = 0.025(s) ,即可得到突加线性负载情况下电压及电流的波形如图 4.8 所示。

图 4.8 突加线性负载电压电流波形
对突加线性负载时的电压波形进行 FFT 分析,其结果如图 4…9 所示。

signal
Selected signal: 5 cycles. FFT window (in red): 5 cycles
500

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (s)

图 4.9 突加线性负载下电压波形的 FFT 分析
可见,合闸瞬间线性负载对系统的冲击造成了一定的扰动,而后扰动逐渐 衰减,可见系统是稳定的。该扰动产生的冲击电压、电流会产生较多谐波,致
使电压波形THD由0.95% 上升为1.17% ,但仍在要求范围内。

4.4 非线性负载仿真实验
将线性仿真实验电路中的线性负荷更换为非线性负荷,即可进行仿真实
验,非线性负荷仿真实验电路图如图 4.10 所示。

图 4.10 非线性负荷仿真实验电路
运行仿真,可得非线性负载下电压及电流的波形如图 4.11 所示

图 4.11 非线性负载电压电流波形

对突加线性负载时的电压波形进行 FFT 分析,其结果如图 3.12 所示。

500 Selected signal: 5 cycles. FFT window (in red): 5 cycles

OFFTwindow

0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (s)

Fundamental (50Hz) = 561.5 , THD= 2.95%
2.5

2

1.5
Mag (% of
1

0.5

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)
图3.12 电压波形进行 FFT 分析
可见,系统带非线性负载后,THD由0.95% 上升为2.95% ,谐波含量比性负载时高了1.95% ,但仍然符合< 3% 的要求。

负载电压

FFT分析

三相平衡

三相不平衡负载电压

FFT 分析

负载电流

参考文献
[1] 夏翔,吴彬锋,朱利锋,等.不平衡及非线性负载下的三相逆变器控制方法[J].浙江电力, 2022(002):041.
[2] 易善军,徐柳飞,张文军,等.不平衡电网电压下三相并网逆变器的控制策略分析[J].微型电脑应用, 2023, 39(8):197-200.
[3] 晏子豪.基于降阶谐振控制器的三相逆变器电压控制研究[J].中国设备工程, 2022(19):3.
[4] 李惠庸,张宏,张海平,等.基于LCL滤波器优化的微电网多逆变器稳定运行控制系统[J].电源学报, 2023, 21(5):83-90.
[5] 程正航陈泽纯刘洋何欢贺超群.不平衡电网电压下三相并网逆变器的控制策略分析[J].环境技术, 2022, 40(5):151-156.
[6] 陈卓,李宗原,李春阳,等.负载不平衡条件下并网逆变器的运行策略研究[J].电力电子技术, 2022, 56(5):4.
[7] 舒婕妤,李胜.三相逆变器不平衡输入输出控制方法:CN202110085760.7
[8] 刘偲艳.不平衡电网下并网逆变器多目标模型预测功率控制[J].电气工程学报, 2023, 18(1):77-85.
[9] 袁庆伟,吴扣林,谢晔源,等.不平衡电网下风电并网逆变器直接正负序功率控制[J].供用电, 2023, 40(1):88-96.
[10] 王力为.弱电网下光伏并网逆变器稳定运行组合控制策略[J].太阳能学报, 2022, 43(7):7.
[11] 徐友,赵涛,陈静.一种不平衡单周控制的三相并网逆变器及其调控方法:CN202211579384.8[P].CN115955133A[2024-02-28].
[12] 张纯江,徐菁远,庆宏阳,等.主从结构微电网逆变器离网全过程平滑切换控制策略[J].电力系统自动化, 2022, 46(23):125-133.
[13] 张纯江,曾松林,庆宏阳,等.基于改进自恢复下垂控制的储能逆变器多维度优化控制[J].电网技术, 2023(12):5193-5207.
[14] 李翼翔,田震,唐英杰,等.考虑构网型与跟网型逆变器交互的孤岛微电网小信号稳定性分析[J].电力自动化设备, 2022, 42(8):8.
[15] 任碧莹,杨媛媛,孙向东,等.一种微电网中提高电压质量的逆变器电压控制器设计方法:CN202210022279.8[P].CN202210022279.8[2024-02-28].
[16] Liu Hui, Lei Yong, Zhu Yingwei, et al. Dual passive control strategy for energy storage inverters under microgrid operation mode switching [J]. China Electric Power, 2022, 55 (1): 7
[17] An Yu, Fan Lijuan, Li Hongxin, et al. Control method and system for microgrid inverters: CN202111588738.0 [P] CN202111588738.0 [2024-02-28]
[18] Dong Jiawei, Wang Zhixin, Zhu Guozhong, et al. Secondary frequency regulation method for drooping inverters in islanded operation [J]. Power Automation Equipment, 2022 (005): 042
[19] Zhang Jiyong, Wang Kai, Ma Yiming, Yang Maozhen, Li Xinyu, Ji Renjun. islanding operation control of microgrids based on adaptive droop [J]. Electrical Industry, 2022 (9): 21-25
[20] Wang Yeqin, Geng Tao, Zhang Weixing, et al. Robust control strategy for islanded microgrid inverters based on fuzzy observer: CN202210709630.0 [P] CN202210709630.0 [2024-02-28]
[21] 张纯江,聂文卿,庆宏阳,et al.基于加权控制的三相四线储能逆变器输出电压不平衡抑制[J].电工电能新技术, 2022(041-006).
[22] 张兴,王明达,吴孟泽,等.扩大三相级联H桥逆变器运行范围的控制方法.CN202011424950.9[2024-02-28].
[23] 乔和,杨涵杰.不平衡负载下四桥臂逆变器的积分滑模控制[J].制造业自动化, 2023, 45(1):111-114.
[24] 袁义生,朱启航,刘伟.扩大级联H桥光伏并网逆变器运行范围的控制策略[J].电力系统及其自动化学报, 2023, 35(11):50-57.
[25] 路颜,程光威,张媛,等.盾构机不平衡负载下逆变器的研究[J].微计算机信息, 2022(006):000.
[26] 洪冬颖.微电网孤岛模式下低频振荡研究[D].中国矿业大学,2022.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值