目录
摘要 1
关键词: 1
目录 3
- 绪论 4
1.1. 研究背景 4
1.2. LVRT的研究现状 5
1.3. 研究意义 6 - 风电场功率分配模型 7
2.1. 引言 7
2.2. 风力机的运行特性 8
2.3. 风力发电机的数学模型 13 - 低电压穿越控制策略时的瞬态特性研究 19
3.1. 转子励磁控制电压的研究 19
3.2. 低电压穿越时电流的瞬态特性研究 20
3.3. 低电压穿越时电网的瞬态特性研究 21 - 双馈风力发电机建模及仿真研究 23
4.1. 双馈风力发电机低电压穿越仿真模型 23
4.2. 低电压穿越运行的仿真与分析 25
本章小结 30
结论与展望 31
参考文献 32
致谢 34
1.绪论
1.1.研究背景
目前,人类面临的紧迫问题是能源的短缺和环境的持续恶化。传统化石燃料如煤炭、石油和天然气等已经成为不可再生能源。伴随着全球工业进程的迅猛增长,传统的能源,例如煤、石油和天然气,不仅面临资源短缺的问题,还导致了大气污染的加剧。此外,随着国际环境的持续演变,能源的使用模式也发生了相应的变化。这些因素使人们认识到必须寻找新的替代能源以满足日益增长的需求。因此,从调整能源构成、环境保护和能源安全的视角出发,全球各国都在努力寻找可替代能源的发展路径,并研究可持续发展的能源策略!太阳能以其无污染、可再生和分布广泛等特点越来越受到人们的关注。风能,作为一种永不耗尽、环境友好的可再生能源,已经得到了全球范围内的广泛关注。风能具有分布广泛、储量丰富、无污染及可再生等特点,被认为是目前最有希望代替化石燃料的新型高效清洁环保的可再生资源。风能的主要应用方式是风力发电,而在新能源发电技术领域,风力发电被认为是最成熟且最适合大规模开发的发电方法之一。我国幅员辽阔,人口众多,随着经济建设的快速发展,对能源需求越来越大。因此,在过去的几年中,全球的风能产业也经历了飞速的增长:
根据专家的估算,地球接收到的太阳辐射能量中,大约有2%会被转化为风能,其装机能力可高达10TW,并且每年能够产生13PW h的电力。目前世界各国已将风能列为重点开发的新能源之一,并取得一定进展。风能因其持续可用、不会耗尽、不对环境造成污染和不损害生态的特性,在确保未来人类社会的可持续发展中起到了不可或缺的作用。目前,世界各国都把大力发展风能作为解决能源危机的战略措施之一,而中国又是世界第一大风电生产国和消费国。为了优化能源构成、减轻由能源使用引发的环境污染,并推动能源与经济、能源与环境之间的和谐发展,积极推动风电的开发和利用成为实现资源节约和环境友好型社会以及可持续发展的关键路径。随着科学技术的不断发展,特别是计算机、电子等高新技术应用于电力系统以后,世界各国都把风力发电设备作为一种新的绿色能源开发加以重视,纷纷投入巨资进行研发。自20世纪80年代开始,我国着手研究并网型风力发电机组。到了1984年,我国成功研制出200KW的风电机组。与此同时,我国的风电场建设也步入了初级阶段,在新疆和内蒙古地区安装了多台从国外引进的机组,并开始了风电并网技术的实验和示范工作。在大约10年的时间里,我国已经成功地掌握了200-600KW大型风力发电机组的生产技术。随着风力发电机组单机容量的增大以及电网对风能利用率要求的提高,我国风电产业得到迅速发展。在这段时间里,风力发电并未被国家视为主要的电力供应方式。然而,随着21世纪的到来,全球范围内的能源和环境问题变得更为严重,这使得我国的风力发电逐步步入了快速增长的时期。随着风能资源开发力度的加大和对可再生能源利用程度的提高,风力发电所需成本会越来越低。我们有理由相信,风能发电将在不久的将来成为我国电力供应的主要渠道之一。
1.2.LVRT的研究现状
国内外对于低电压穿越或故障穿越的问题都进行了深入的研究和讨论,这些研究主要集中在两大领域:一是优化控制策略,二是引入硬件辅助电路。本文对目前比较成熟的几种控制策略进行了分析对比,提出一种基于虚拟阻抗法与转子磁链定向矢量控制相结合的策略来改善双馈电机的低电压穿越性能。经过研究发现,利用这两项技术能够显著增强双馈机组在低电压条件下的穿越性能。目前,关于双馈发电机转子侧变流器及风电场并网控制技术方面的研究已经有很多成果发表,但是对于双馈发电机组低电压穿越的相关研究却较少。第一个方法是基于风机的建模来优化控制策略,目的是增强风机在低电压下的穿越性能;另一种则是通过对电网进行无功补偿,来改善网侧电容电流的平衡,从而增强风电机组的低电压运行能力。另一种策略是通过加入Crowbar电路和储能系统等相关外部设备,目的是降低机组在故障发生时的冲击力,协助机组顺利通过故障,从而增强其在低电压下的穿越性能。
文献[10]所使用的控制技术综合了H∞和μ-analysis方法在各种不利条件下的应用。本文在此基础上提出一种新的控制策略。主要的控制策略是在故障发生时,电网不能提供或吸收电能,因此我们设定风力机的参考功率为零,并确保定子输出的有功功率完全用于保持电容的能量稳定;当出现故障时,通过调节励磁系统的参数使转子输出转速与参考模型一致,此时电机的输出功率也会相应地增大。利用文章中构建的H∞网侧控制器,我们可以识别直流电压和定子端电压的问题,并通过生成的电流信号来对这些问题进行补偿。
根据文献[11]的描述,双馈电机LVRT在故障发生时转子产生的反电动势(EMF)是其主要难点。为了限制短路过渡阶段的过电流,文中对反电动势进行了相应的限制。在本文中将针对该问题提出一种改进方法,即基于转子磁场定向矢量控制技术来抑制反电势中的正磁分量,从而降低了过电流发生的可能性。核心的控制策略是通过利用转子的电压来减少定子磁链中的直流部分和负序部分。接下来,我们需要对转子电流进行有针对性的调整,确保转子电流能够中和转子磁链中的直流部分和负序部分。同时,要确保转子电流不会过流,直流电压不会过压,并适当增加定转子的漏感,这样不仅可以增强转子电流的抵消效果,还能提高风力机组的LVRT性能。
文献[12]指出,通过优化dq轴电流环的动态耦合部分,可以有效地增强电流环的动态响应特性。在当前的转子变流器电流环控制技术中,电流dq轴的交叉耦合前馈项通常会忽视定子磁链的导数部分。在定子电压保持稳定且定子磁链保持不变的前提下,这种做法是合适的;当电压出现突然变化时,定子磁链的稳定性会受到影响,其导数部分是不可忽视的。我们可以采用DFIG磁链微分方程来描述定子磁链的导数,并用定转子电压与电流的关系来表示,这种方法被称为“优化转子dq电流的耦合部分”。
根据文献[13-14]的描述,为了提高响应速度,在电流环中加入了反映磁链衰减的前馈项,这种方法被称作“暂态磁链补偿控制”。本文针对该控制策略提出了一种改进方案——基于转子位置检测的磁链抑制策略,并对其进行了详细的理论研究与仿真验证。经过深入分析,我们发现在电压下降和恢复的过程中,定子磁链会触发一个指数衰减的直流暂态部分,以确保磁场的连续性。将这一暂态部分提取并加入到电流闭环控制中,可以有效抵消磁链振荡导致的电流振荡,从而提高电流的动态性能。
关于转子电流控制环的改进和优化,目前已有大量相关文献。这些文献的核心目标是引入与定子磁链等状态变量有关的前馈因子,以提高转子变流器在跌落前后的控制性能。通过分析发现这类方法能够有效地提升系统暂态响应能力,并且可以提高系统运行稳定性。然而,这些控制策略在算法设计上相当繁琐,对控制器的精确性有很高的要求。同时,这些控制策略没有精确地提供电压下降的数学模型,因此也没有准确地揭示影响电压下降时瞬态特性的根本因素。
1.3.研究意义
随着全球能源格局逐渐转向清洁和低碳,风能作为一种可再生且环境友好的能源形式,其在全球范围内的开发和应用受到了普遍的关注。风力发电是风能利用方式中最经济有效的手段。风电场,作为风能应用的主要方式之一,其工作效率和稳定性对能源供应的品质和稳定性有着直接的影响。由于风速随机性强,风电出力与负荷特性存在着非线性相关性,使得风力发电系统输出功率受多种因素影响而呈现复杂的变化状态。因此,对风电场的功率进行精确的预估,并促进风机间的合作优化,这对于理论研究和实际应用都具有巨大的价值。
(1)提高风电场运行效率:对风电场功率的预测构成了风电场运营管理的核心。因此,开展风电机组协同优化研究具有重要意义。通过对功率的精确预测,我们能够合理地规划风电场的并网策略和运营调度,从而减少风电场的运营开销并增强其经济回报。此外,通过风机的协同优化,风电场能够在不断变化的气候环境中保持稳定,从而降低因设备故障或停机造成的能源损耗。
(2)促进电网稳定运行:风电场功率的不稳定性和不可预测性为电网带来了不小的考验。在考虑风电出力随机性的基础上,利用改进粒子群算法求解含分布式电源的多场景模型下的最优潮流问题,并结合算例验证该方法的可行性和有效性。通过对风电场功率的预测和风机的联合优化,我们可以降低风电功率波动对电网的负面影响,从而增强电网的稳定性和可靠性。这对于确保电力系统稳定运作和推动可再生能源的吸收是至关重要的。
(3)推动风电技术发展:风电场的功率预测以及风机的协同优化已经成为风电技术研究的前沿领域。本文所提出的一些方法在一定程度上能够有效地解决风能资源分布不均导致大规模风力发电接入电网的问题,从而保证了电网的安全稳定运行。通过对这些核心技术的深入探讨,我们能够促进风电技术的创新与进步,从而增强风电技术在市场上的竞争优势和地位。此外,这些研究成果也为其他可再生能源的研发和应用提供了宝贵的参考和启示。
(4)应对能源危机和气候变化:鉴于全球能源和气候问题的加剧,寻找和应用可再生能源已经成为应对这些问题的关键策略。因此,研究并实现风力发电机组输出功率预测、风机协同优化等相关问题是未来风能发电领域的重点课题之一。风电,作为可再生能源的核心部分,其进一步的发展和广泛应用在缓解能源短缺、降低温室气体排放和应对气候变化方面都具有不可忽视的价值。风电场的功率预测与风机的协同优化是风电技术中的核心技术,这些研究成果为全球能源的转型和持续发展提供了坚实的支撑。
总的来说,对风电场的功率预测和风机的协同优化进行研究是非常有价值的。该系统将先进的计算机技术、人工智能等应用到风力发电领域中,实现了对风电功率的实时预测和分析。该技术不仅有助于提升风电场的操作效能和稳健性,进一步促进电网的平稳运作,还能催生风电技术的创新与进步,从而为全球能源结构的转型和可持续发展提供强有力的支撑。
2.风电场功率分配模型
2.1.引言
近几年,风力发电在规模和发展水平方面都实现了飞速的增长。我国的风能资源十分丰富,随着国家对能源结构的调整,风电产业成为新的经济增长点。随着时间的推移,风电制造行业也得到了快速的发展和壮大。随着风力发电机技术的不断成熟,风机设备向着大型化方向迈进。发电机的种类已经从定桨的恒速恒频风力发电机进化到如今的变桨变速恒频双馈感应式发电机和直驱式风力发电机。从结构型式看由最初的塔架型风力机发展到如今的叶片型风力机。随着单机的容量逐渐增加,目前风电场主要使用的是兆瓦级的发电机组。随着大容量风机的投入运行,对电力系统中的暂态稳定性提出了更高要求。得益于电力电子技术的飞速进步,采用电力电子器件励磁的双馈感应式风力发电机组由于制造成本的降低和更为灵活的控制策略,已经获得了广泛的应用和认可。在我国,随着风能资源开发力度的不断加大,双馈感应风机已经成为一种重要的机型。本研究主要集中在双馈感应式风电机组的低电压穿越问题上,根据能量流动的关系,整个双馈风力发电系统的构造如图2.1展示。其中包括风轮、发电机、变频器、逆变器以及控制系统。该系统由风轮机、齿轮箱、变桨构造、偏航机构、双馈电机、变流器、变压器以及电网等多个部分组成。其中,风轮是整个系统中最重要也是唯一能够提供机械动能的部件。该设备的操作流程是这样的:风轮机将捕获到的风能转换为机械能,然后通过齿轮箱传输到双馈电机,接着双馈电机将机械能转换为电能,最后通过变流器和变压器将其并入电网中。本文从分析风电场接入电网后对电网产生的影响入手,提出了一种基于功率平衡原理的控制策略。我们通过系统控制器和变流器对桨叶和双馈电机进行精确控制,确保整个系统能够最大限度地捕获风能。同时,通过对变桨结构、变流器和Crowbar保护电路的精细控制,我们能够有效地应对电力系统可能出现的各种故障。
图2.1 双馈风力发电系统结构
2.2.风力机的运行特性
在风力发电系统中,风力机扮演着能量转换的核心角色,其主要功能是捕获流动空气中的动能,并将风力机叶片在迎风扫掠区域内的部分动能转化为机械能。因此,其性能对风力发电机组起着决定性作用。它不只是决定风力发电系统的输出功率的关键因素,同时也对机组的安全性和稳定性有着直接的影响,被视为风力发电系统的核心组件之一。因此研究风力机及其传动系统的性能对提高我国风能利用率及降低能源消耗都有着重要意义。从风力机的空气动力学属性来看,风力机的输入功率可以参考公式2.1:
式2.1
在这个公式里,P代表的是空气的密度;A代表风力机叶片的扫风面积;v代表的是空气进入风力发电机的速度。
鉴于不是所有通过风轮旋转的风能都能被风轮充分吸收和利用,因此我们定义了一个名为风能利用系数Cq的公式,具体见式2.2:
式2.2
所以风力机输出机械功率为见式2.3:
式2.3
上式中,R表示风力机风轮直径。
风能的有效利用系数为C。其中叶片直径和桨叶长度对其影响较大,而其它因素如叶片间距等则相对较小。这是一个描述风力机工作效率的关键指标,它与风速、叶片的转动速度、叶片的直径以及桨叶的角度都存在紧密的联系。为了更好地探讨Cp的属性,我们定义了风力机的一个关键参数,即叶尖速比λ,也就是叶片的叶尖线速度与风速的比值,详见公式2.4:
式2.4
在这个公式里,ωW代表叶片旋转时的机械角度速度;Nw代表叶片的旋转速度。
风力发电机主要有两种类型:变浆距和定浆距。在设计和计算叶片型线时必须考虑这些参数之间的关系,即所谓“气动几何”问题。如图2.2展示的那样,变浆距机的性能特性通常是通过一个特定的风能利用系数Cp来描述的。在叶片设计过程中,如果考虑了叶片气动载荷和桨叶强度等因素后,就能得到一个比较合理、实用的桨距角α值。风能的利用系数Cp与叶尖速比λ和桨距角β都有关系,综合考虑,它可以被表示为Cp(λ,β)。从图示中我们可以观察到,随着桨距角β的逐步增加,Cp(λ)曲线会明显地减少。
图2.2变浆距风力机性能曲线
在桨距角β保持不变的情况下,风能利用系数Cp仅与叶尖速比λ有关,因此可以通过一条曲线来描述Cp(λ),这条曲线即是定桨距风力机的性能曲线,如图2.3展示的那样。它反映了叶片对气流的捕获和耗散能力,也体现出叶片形状对叶尖区流场结构及流动参数的影响。在固定的桨距下,叶尖的速度比λ是决定风能利用系数Cp大小的关键因素。对于某一特定类型的风力发电机,存在一个最佳的叶尖速比λopt,该比值能使Cp达到最大值。然而,当叶尖速比超过或低于这一最佳值时,风能的利用系数C将会偏离最大风速,从而导致机组效率的降低。当风速增大时,随着叶片数增加,叶尖速比越大,单位面积上获得更多能量的能力越强,因此,提高风能利用程度就成为了必然要求。依据贝兹理论,风能的最大利用系数是能利用系数Cp因此,当叶片数一定时,随着风速增大,风能利用也随之增加,但增速却逐渐减小,即达到了极大值后,再随风速继续增大而降低Cp=0.593 一般水平风力机的C值范围是0.2~0.5考虑到风力在风场中可能会受到风p maX速和风向变化的影响,实际C的值大约是0.4,很难超过0.5。
图2.3定桨距风力机性能曲线
从图(2.3)可以看出,在风速固定的情况下,风力机的机械功率大小是由Cq的数值决定的。本文研究了桨距角及叶片几何形状对风力机气动性能的影响。Cq与浆距角β和叶尖速比λ之间的非线性联系可以在以下公式(2.5)(2.6)中找到。
式(2.5)
式(2.6)
上式中C1=0.5176,C2=116,C3=0.4,C4=5,C5–21,C6=0.0068。
从风力机最大风能捕获的工作原理来看,当风速增加时,相应的风力机的转速也会相应地提高。由于风力发电机组采用变速恒频运行方式,其输出功率随风速变化而变化,所以可以通过调整叶片桨距角以达到增大风能利用系数的目的。然而,由于风电机组的转速和功率的极限限制,风力机的转速不太可能过高。当风速超过额定值时,风力机将无法达到最大风能捕捉点,并产生较大的电能损耗,造成巨大的经济损失。因此,当风速低于额定值时,双馈发电机将进行次同步操作。风力机将按照固定的浆距角进行工作,并由发电机的控制系统来调整转速和风力机的叶尖速度比,这样可以有效地追踪最佳功率曲线并捕获最大的风能;当风速超过额定值后,风力发电机组根据自身情况进行调整,使其保持在额定功率范围内。当风速超过额定值时,双馈发电机将进行超同步操作,而风力机则会调整桨距角。通过机械调整,我们可以改变风能转换系数,进而控制风电机组的转速和功率,确保风电机组不会超出其转速和功率的极限运行。
2.2.1.风力发电原理
随着风能技术的快速进步,双馈感应风能发电系统因其卓越的表现逐渐赢得了市场的喜爱。其中双馈异步发电机作为一种新型发电机,在电网中得到了广泛应用。交流励磁发电机,也被称为双馈异步发电机,拥有两套绕组,分别是定子和转子。定转子采用同一铁芯结构,由同一个硅钢片叠压而成。异步电机的定子结构与定子结构是一致的,它们都配备了分散的交流绕组,而转子的设计则包括集电环和电刷。由于采用了集中磁极和转子铁心结构,使得它比普通异步电动机有更大的功率密度、效率及更好的调速性能。不同于绕线式异步电机和同步电机,转子的三相绕组采用了交流励磁技术,这使得它既能为我们提供电能输入,也能为我们提供电能输出。转子采用双铁心结构,每极分别安装有两个永磁磁路。转子的交流励磁电流通常是由连接到电网的变流器提供的,而这些励磁电流的振幅、频率、相位和相序都可以根据实际运行需求进行相应的调整。这种新型同步电动机称为双馈异步发电机。双馈异步发电机在并网运行时,不仅在工资较低的情况下持续向电网供电,而且在特定的工作条件下,转子也能向电网供电。这意味着发电机可以从其两端(即定子和转子)进行电能的馈送,因此“双馈”这一名称应运而生。
从电机的构造来看,绕线式异步电机的转子配备了三相对称的绕组。根据电机的工作原理,当三相对称绕组中加入三相对称的交流电时,会在电机定子的气隙中产生一个旋转磁场。这个旋转磁场的转速与进入的三相交流电的频率和发电机的极对数密切相关。当两相电压不平衡时,就会发生电磁转矩和磁通密度的脉动,从而引起振动和噪声,因此必须对其进行调节控制。双馈电机作为机电能量转换的关键接口,在这一系统中发挥着至关重要的角色。所谓的双馈电机就是利用两台或多台变频器同时工作来驱动两个以上不同方向的磁通以达到变速运行的一种新型电动机。由于定子和转子都有能力进行能量的输入或输出,因此“双馈”这一概念便由此诞生。因此双馈电机的研究和发展受到了广泛重视。双馈发电机通常是通过转子侧来提供交流励磁的,因此也常被称作交流励磁同步发电机或是异步化同步发电机。双馈电动机和普通异步电动机有很多相似之处,但又有其自身独特之处,它既不同于同步电机又有别于感应电机。双馈电机的显著结构特性包括:其定子与传统的三相交流发电机定子相似,都配备了分布式绕组;而转子的设计并不是采用同步发电机的直流集中绕组,而是选用了三相分布式交流绕组,这与三相绕线式异步机的转子构造十分接近。这种定子结构使其在运行中不需要对转子磁场分布进行调节。在正常运行状态下,定子绕组直接连接到工频电网中,而转子绕组则是通过背对背的变流器与电网建立连接。当电网发生故障时,系统将自动切换到备用方式运行,以保证整个电力系统能够可靠地运行。因此,双馈电机的定子电压和频率是固定的,而转子电压的频率、幅度、相位都可以通过三相变频电源来控制。由于其特殊的拓扑结构,双馈电机有较强的抗负荷扰动能力及良好的调速性能。双馈式感应发电机的变速恒频控制策略是在转子回路中得以实施的。
假设f1和f2是定子和转子电流的频率,n1代表定子旋转磁场的转速(也就是同步转速),n2则是转子旋转磁场相对于转子自身的转速,n代表转子的转速,而P则是电机的极对数。本文讨论了双馈电永磁同步电机的数学模型及电磁转矩特性。在稳定的运行状态下,双馈电机的定子和转子的旋转磁场在空间维度上呈现出相对的静态状态,以下是其数学关系的表达式(2.7):
式(2.7)
从电机的理论角度来看,双馈电机的滑差率S=(n1-nr)/n1,这意味着电机转子侧的励磁电流频率可以用公式(2.8)来描述:
式(2.8)
根据上述公式,当发电机的转速nr发生变化时,我们可以通过调整转子励磁电流的频率f2来实现相应的调整,这样可以确保定子输出的电能频率f1保持稳定,进而达到双馈异步发电机变速恒频的控制效果。因此,研究双馈异步发电机具有重要意义和应用前景。与传统的异步发电机相比,双馈异步电机最显著的特性是在亚同步、超同步和同步三种状态下都能高效地向电网输出电能,这主要是因为它采用了可控的转子交流励磁技术。因此,研究双馈异步电机变频调速控制技术具有重要意义。利用矢量控制技术
这种制造技术能够独立地解耦定子的有功和无功功率输出,与传统的异步控制相比,它具有明显的优势
对于发电机,它展现出了显著的优势。以下是三种不同的运行状况的详细描述:
(1)在亚同步速的运行状态下,如果励磁电流产生的旋转磁场方向与转子的转速方向一致,那么会出现nr+n 2=n1的结果,这意味着转子的旋转速度低于电机的同步转速。
(2)在超同步速的运行状态下,如果励磁电流产生的旋转磁场的方向与转子的转速方向是相反的,那么就会出现nr-n 2=n1的情况。如果转子转动角度与发电机定子电压频率一致,则转子不可能发生反电势。此刻,转子的旋转速度超过了电机的同步转速。为了达到n 2的反向转向,当转子从亚同步模式运行时,其三相绕组必须具备自动调整相序的能力。
(3)在同步速的运行模式下,转子绕组的励磁电流呈现为直流电流,即f2=0,此时的nr=n1,这一状态与同步发电机有相似之处。
与绕线式感应电机的电气串级调速或双馈电动机调速系统相似,流经转子回路的功率是由双馈发电机的转速范围决定的转差功率,这个转差功率只是定子额定功率的一小部分,并且可以双向流动。因此,与转子绕组连接的励磁变频器的容量只占发电机总容量的一小部分,这显著地减少了变频器的尺寸和质量。同时,由于双馈发电机具有较高的功率因数和良好的动态性能,使得双馈风力发电机组成为一种高效率的新型风电机组。通过采纳双馈发电策略,我们打破了机电系统必须严格同步工作的传统思维,这意味着原动机的转速不会受到发电机输出频率的限制,同时发电机的输出电压和电流的频率、振幅和相位也不会受到转子速度和瞬时位置的影响,从而使得机电系统间的刚性连接转变为柔性连接。
双馈电机的转子侧连接了变流器,其调速的核心理念是在转子回路中加入附加电势,并通过调整附加电势的幅度、相位和顺序来达到双馈调速的效果。双馈异步发电机作为变速恒频风力发电的重要设备之一,是目前世界各国研究开发的重点领域。相较于传统的直流励磁同步发电机,双馈异步发电机的励磁系统调节能力从一个增加到了三个,分别是励磁电流的振幅、频率以及相位。当励磁电压发生改变时,励磁电流也随之变化。因此,调整励磁不仅有助于调整发电机的无功功率,同时也能影响发电机的有功功率和转子的旋转速度。此外,由于双馈电动机采用了新型定子绕组结构,使得它具有良好的气隙磁场分布以及较低的磁密谐波含量。因此,这种电机在增强电力系统的稳定性和变速操作能力上展现出了卓越的性能。
2.3.风力发电机的数学模型
双馈型异步电机构成了一个高阶、非线性且高度复杂的多变量系统。由于它具有结构简单和运行可靠等优点,所以在风能利用中得到了广泛应用。要研究双馈风力发电机的控制方法,首先需要从双馈发电机的数学模型开始。双馈发电机的转子磁链定向矢量控制策略具有简单可靠等特点,因而得到广泛的应用。双馈发电机的机电能量转换主要依赖于基波磁场来实现,因此,在研究双馈电机的多变量非线性数学模型时
在进行型时,为了使分析更为简洁,通常会做出以下的假设:
(1)气隙分布是均衡的;
(2)磁路是线性的;
(3)转子的各个相的绕组结构是一致的,导体在空间中的分布模式导致了正弦磁势波的产生。转子的三相绕组是对称的,当三相平衡的转子电流作用时,会产生一个单一方向的圆形旋转磁场;
(4)定子的各个相的绕组结构是一致的,并且三相绕组是对称的,这导致感应到的定子磁势在空间中呈正弦分布,并且具有与转子磁势波相同的极数。
2.3.1.双馈风力发电机在静止A_B—C坐标系下的模型
在三相静态坐标系中,定子的三相绕组轴线A、B、C在空间中是固定的,并以A轴作为参照轴;当转子围绕阻子a、b、c进行旋转时,转子的a轴与定子体的轴间的电角度口成为空间角位移变量。
在完成绕组的归算之后,双馈电机的绕组的等效物理模型如图2—4展示。由于双馈电机定子侧与机端之间存在着一个不平衡磁场,因而其电磁转矩将产生一定程度的畸变。如果在定转子侧都遵循电动机的常规操作,并且电流以流入为正数,那么双馈电机在三相静止坐标系下的数学模型可以参见图2.4:
图2.4 三相静止坐标系下的双馈电机物理模型
电压方程
三相定子绕组的电压平衡方程式(2.10):
式(2.10)
三相转子绕组折算到定子侧后的电压方程式(2.11):
式(2.11)
磁链方程
定转子每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此6个绕组的磁链可用分块矩阵表示式(2.12):
式(2.12)
上式中,各磁链分量与定、转子侧漏感、互感分别是:
电磁转矩方程设式:
式(2.13)
上式中,np是双馈电机的极对数。
运动方程
根据动力学理论,发电机的运动学方程式(2.14):
式(2.14)
2.3.2.双馈电机在同步旋转坐标系(由)下的数学模型
按照正方向的规定,定子和转子的正方向都应遵循电动机的常规操作,通过坐标转换技术,将复杂的非线性电机数学模型转化为在同步旋转坐标下的双馈电机数学模型。为了得到较好的仿真效果,采用了基于磁链定向控制的矢量控制策略。在这一数学模型中,电压与磁链被解耦,从而赋予了该数学模型线性行为的特性。
电压方程式:
式(2.15)
磁链方程式:
式(2.16)
在考虑LVRT控制策略时,我们需要从电流的视角出发。因此,通过将磁链方程插入电压方程,我们可以得到一个描述双馈发电机电磁暂态过程的状态空间方程,该方程以电流为变量,如2.17所示:
式(2.17)
上式中A、B是状态空间方程的系数矩阵,U为电压列向量,为电流列向量。
在上述的数学公式里,Lm代表在dq坐标系中,定子与转子同轴等效绕组间的相互感应,具体为Lm=1.5Lms=1.5Lmr;在dq坐标系中,Ls代表定子的等效两相绕组的自我感知,具体为Ls=Lm+Lls;在dq坐标系中,Lr代表转子等效的两相绕组的自感,其中Lr=Lm+Llr:r1和r2分别代表定子绕组和转子绕组的电阻;在此模型基础上提出了一种基于三相异步电机矢量控制理论的新型调速方法。ω1代表的是同步的角速度;ωr代表转子的角速度;d/dt代表微分操作符。
转矩方程式:
由坐标系下,双馈电机电磁转矩方程可表示是式(2.18):
式(2.18)
运动方程与三相静止坐标系下一致。
2.3.3.变速恒频双馈电机的功率特性
对变速恒频双馈电机的工作特性和功率之间的关系进行深入探讨,对于风力发电系统的整体设计和管理是至关重要的。从理论上分析了变速恒频双馈机各部件之间的相互影响及作用机理,并建立其数学模型。但是,变速恒频双馈电机的功率关系相当复杂,包括有功和无功功率的关系,以及内部和外部的功率关系。本文将研究变速恒频双馈机的功率关系并建立相应数学模型。发电机的内部功率分布反映了有功和无功功率之间的均衡关系;外部功率的关系主要体现在定子与电网间的有功和无功功率的交换,以及转子与变换器间的有功和无功功率的相互交换。这些不同类型的功率关系决定了其相应的控制策略和控制方式,从而影响到变速恒频双驱电动机系统的安全、可靠运行。本部分深入探讨了变速恒频双馈电机向电网注入时的有功和无功功率,旨在为变速恒频双馈电机在稳定运行和低电压穿越时的功率分析提供坚实的理论支撑。
在ABC坐标系中,变速恒频双馈电机的三相瞬时输出有功功率的实际数值是公式(2.19):
式(2.19)
当处于三相对称的工作状态时,如果用相电压和相电流来描述,那么它可以被转化为公式(2.20):
式(2.20)
在使用标幺值的情况下,由于我们选择定子相电压和相电流的幅度作为基准值,为了确保发电机在额定电压、额定电流和功率因数为1的条件下运行,输出的有功功率标幺值为l,我们采用了标幺值表示的三相瞬时输出有功功率的公式(2.21):
式(2.21)
在三相对称的操作中,由于零轴成分为零,所以可以将其简化为公式(2.22):
式(2.22)
为了深入分析输出的无功功率,我们引入了复功功率,这使得我们能够得到以标幺值表示的变速恒频双馈电机的三相瞬时输出有功功率和无功功率,具体可以参考公式(2.23)和公式(2.24)。
式(2.23)
式(2.24)
3.低电压穿越控制策略时的瞬态特性研究
3.1.转子励磁控制电压的研究
当电压下降时,谐波分量系数与转子励磁电压的d轴部分和p轴部分密切相关。当定子电阻发生变化或电动机参数不同时,会使谐波分量发生改变。本研究计划使用控制谐波分量系数的策略,将谐波分量的系数设为零,从而达到消除谐波电流的目的。如果将谐波分量的系数设置为零,那么我们可以得到一个公式(3.1):
式(3.1)
对上式求解,则可以得到式(3.2):
式(3.2)
在电网电压跌落的时候,双馈电机的转子侧需要施加的励磁控制电压式(3.3):
式(3.3)
3.2.低电压穿越时电流的瞬态特性研究
当电网出现电压下降的情况时,我们可以通过调整转子励磁电压来确定在此控制策略下双馈电机的定子电流公式(3.4):
式(3.4)
上述公式指出,在控制转子励磁电压的情况下,定子电流里并没有谐波成分,仅存在稳定的直流成分和基波成分,这些成分的振幅受到发电机参数、电压下降的深度以及发电机运行状况的影响。此外,还分析了不同情况下该方法所能达到的最大有功功率和无功功率输出值。因此,对于电网而言,即使在低电压穿越的情况下,也不会对电网的电能质量产生负面影响。
3.2.1.低电压穿越时电磁转矩的瞬态特性研究
在电压下降的情况下,双馈电机传动系统主要受到电磁转矩分析的影响。通过仿真和实验验证了该分析方法的正确性,同时也证明了采用基于转子侧变流器的方法可以有效地减小系统在故障状态下产生的高次谐波电流,从而实现对系统低电压穿越能力的提高。为了确保本研究中提出的低电压穿越控制策略能够有效地消除谐波电流,并使双馈电机的传动系统能够平稳地度过这一过渡阶段,对该策略进行深入分析是非常必要的。
通过对转子励磁电压控制策略下的电流进行分析,我们得出了转子励磁电压控制策略下的电磁转矩的解析式(3.5):
式(3.5)
其中:
工频分量的平均数值为零,这意味着工频分量不会对发电机的工作状况产生影响。当系统发生故障时,由于故障点和非故障点间存在较大差异,此时发电机将产生双向转矩分量。单向转矩分量的大小不仅受到双馈电机参数和运行状况的影响,还与电网电压下降的深度存在非线性的关联。当故障发生后,由于风机和发电机之间存在较大的相位差,使得双向旋转失步现象更加严重。为了确保在控制转子励磁电压时发电机的转速保持稳定,我们需要调整风力机的机械转矩,使其与发电机的单向电磁转矩匹配。基于此提出一种利用风能转换为机械能进行功率平衡控制的方法,从而保证了风电机组输出功率和风机自身的功率因数均满足设计要求。在变速恒频双馈风力发电机中,通过调整风力机的浆距角,可以实现对其机械转矩的精确控制。
3.3.低电压穿越时电网的瞬态特性研究
根据现代风电场的并网操作标准,当采用低电压穿越控制策略时,双馈电机应能与电网持续并网工作,并且双馈电机还需要向电网提供无功功率,这有助于电网电压的快速恢复。因此,在实施转子励磁电压控制策略的过程中,有必要对双馈电机的有功和无功功率的变化状况进行详细分析。在电压下降之前,对注入电网的即时有功和无功功率进行的分析可以在公式(3.6)和公式(3.7)中找到:
式(3.6)
式(3.7)
双馈感应电机向电网注入时,其有功和无功功率始终保持稳定。因此采用定子磁链定向的矢量控制系统可实现对双馈电机的无速度传感器控制。在本研究所采纳的转子励磁电压控制策略中,由于成功消除了谐波电流,双馈电机在注入电网时的瞬时有功功率和无功功率都包含了工频成分和恒定成分。文中分析并给出了这两种分量对发电机定子侧功率因数和暂态功角影响的表达式,从而确定出它们所对应的稳态值。由于在一个周期内工频分量的平均值为零,因此在低电压穿越运行模式下,双馈电机向电网注入的平均有功功率和无功功率可以通过公式(3.8)和公式(3.9)来展示。
式(3.8)
式(3.9)
上式可以看出,两种运行方式下存在的关系如式(3.10)式(3.11)所示。
式(3.10)
式(3.11)
在本研究中,我们在转子励磁电压控制的条件下,确保双馈感应电机在不脱网的情况下运行,并向电网注入无功功率,这将对电网电压的恢复起到积极作用。
4.双馈风力发电机建模及仿真研究
本研究使用Matlab/Simulink作为研究工具,对转子励磁电压控制下的双馈风力发电系统的低电压穿越功能进行了仿真分析。通过建立发电机及电网的数学模型并采用不同控制策略实现了定子侧电流指令值与转速信号之间的解耦控制。Matlab/Simulink具有出色的功能,并在数据处理、图像处理、编程和计算机仿真等多个领域获得了广泛应用。S曲ulink是Matlab内置的交互式仿真集成环境,它为用户提供了一系列丰富的仿真工具包、仿真模型以及图形用户界面。
4.1.双馈风力发电机低电压穿越仿真模型
4.1.1.双馈风力发电机仿真模型
依据变速恒频双馈风力发电机的数学模型,我们分别构建了定子模型、转子模型和磁链模型这三个独立的模块。通过将三个模块融合在一起,我们成功地构建了一个双馈风力发电机的仿真模型。
定子电压模型
依据定子电压的方程式,我们构建了一个定子仿真模型,如图4.1所示,其中左侧的图是基础框图,而右侧的图则是封装模型。
图4.1 双馈感应电机定子电压模型
转子电压模型
依据转子电压的方程式,我们构建了转子的仿真模型,如图4.2所示,左侧的图是基础框图,而右侧的图则是封装模型。