MIMO系统中注水功率分配研究(源码+万字报告+讲解)

目录
MIMO系统中注水功率分配研究 1
摘要 1
abstract 2
1绪论 3
1.1研究背景及意义 3
1.2MIMO系统文献综述 4
1.3选题研究路线,研究方法 6
2MIMO系统介绍 6
2.1MIMO系统的概念 6
2.2MIMO技术分层空时结构 7
2-2 D-BLAST原理示意图 8
2.3本章小结 8
3MIMO通信注水功率分配算法 9
3.1MIMO信道模型 9
3.2功率注水算法 9
3.3注水算法在MIMO系统中的应用 11
4仿真结果分析 11
4.1注水算法和平均功率分配的性能比较 11
4.2仿真分析 12
5结论 16
参考文献 16
致谢 17

1绪论
1.1研究背景及意义
MIMO技术是一种专门用于处理空域信号的技术手段。由于空间分集能够有效地提高系统容量,因此得到了广泛的应用。随着通信和计算机技术的不断进步,人们对无线传输方式的应用越来越感兴趣,其中发射分集技术已经成为解决这一问题的关键手段之一。在过去很长一段时间内,无线通信系统中对功率分配算法的要求是很高的。起初,空域资源的研究主要集中在接收分集技术上。随着移动通信技术的飞速进步,人们开始更加关注衰落信道环境下的信息传递问题。由于衰落环境会导致信道容量降低,频谱效率下降等一系列严重影响系统性能的负面后果,所以对其进行深入研究具有重大现实意义。在无线通讯系统里,信号衰减对整体性能造成了显著的不利影响,单纯地增加发射机的发射功率并不是一个聪明的决策。因为如果不能很好地控制衰落,那么接收端将无法正确解码发送端的数据信息,从而降低整个系统的吞吐量。因此,在通信行业中,如何有力地抵抗衰落已经变成了一个既重要又迫切的议题。由于衰落会使接收到的数据出现错误或丢失现象,所以在实际工程应用中必须采用分集策略来提高系统的吞吐量及频谱利用率。在信号逐渐衰减的信道条件下,每次误码率降低一个数量级,发射机都需要承担超出10dB的额外功率开销。因此为了降低这种损失,人们开始寻求新的手段来抑制和减弱这一问题,其中最为常用的就是多天线接收方式,即分集技术。本篇文章详细描述了在几种主流无线多址通信系统中所采用的分集技术,并对这些技术的长处和短处进行了深入的分析和比较。同时还讨论了各种典型的基于子载波分组调度算法的多天线无线通信系统的抗衰落性能。分集技术被视为一种对抗信道衰减的高效手段,它通过利用信号在不同传播路径上表现出的不同衰落特性,并采用特定的分集策略,从而提高接收端的信号与噪声的比例。目前已经有大量文献研究过各种形式的分集技术。分集技术可以被划分为时间分集、频率分集和空间分集三个主要类别。特别是空间分集技术,它能在不牺牲信号带宽和不改变数据传输速度的情况下实现分集增益,因此得到了广泛的应用和推广。最早的空间分集是将所有信源分别放置到两个或更多的子载波中传输,由于这种方式会降低整个系统的容量而没有实际价值。后续,有提议使用基于多天线的空间分集技术来提高系统的性能,但这种方法会导致设备成本的增加。本文首先介绍了空间分集的发展历程以及目前主流的几种典型空间分集类型,然后分析了各种空间分集技术的优缺点及其适用场合。最初探索的空间分集方法是接收分集技术,这项技术通过在接收端设置多个天线,并采用分集算法,能够实现20~30dB的增益;由于对通信容量的需求日益增长,传统的单用户多信道传输策略已不再适应当前的需求。为了提高频谱利用率以及降低发射功率消耗,许多学者开始关注于将多址接入与多用户分集相结合的方式,从而达到最大化网络吞吐量的目的。随后,科研人员注意到发射分集在抵抗小尺度衰减的效果上也呈现出了类似的成果。因此,人们开始尝试将空间分集引入无线通信系统中。举例来说,时-空联合设计层状码(LayeredSpace-Time LST)和时空块状码(Space-Time Block Codes STBC)均已被验证具有出色的天线分集增益性能。这篇文章主要探讨了在空间格码中,如何结合发射分集与接收数据进行自适应解码,以增强通信的效率和性能。对于时间格码来说,其主要优势在于它具有更高的传输效率和更好的抗噪声能力,并且由于其较低的复杂度而受到广泛关注。除了提供分集增益外,某些时空码还可以通过在不同的发射天线上设计特定的发送模式来实现编码增益,比如时空格形码(Space-TimeTrellisCodes STTC)。这些新方法已经应用于实际无线通信系统之中并取得了很好的效果。当发射分集和接收分集都展现出了出色的性能后,选择在发射端和接收端同时设置多个天线的MIMO系统逐步成为研究的中心话题。
MIMO在现代通信技术中被认为是一项关键性的技术突破,特别是在解决未来无线网络密集型业务面临的容量瓶颈问题方面,其表现尤为突出。该技术能够提高无线通信系统的频谱使用效率和数据传输速度,从而产生更高的经济回报,因此越来越多的人开始关注它。MIMO系统的容量与功率资源的分配之间存在着紧密的关系。因此,在目前的移动通信系统3G以及未来的beyond3G、4G中的多输入多输出正交频分复用(MIMO+OFDM)系统中,如何在不同的时隙、频段、业务和用户之间进行合理的功率资源分配,其重要性是显而易见的。尽管国内外在这一领域的理论和模拟研究已经相当成熟,但由于其内在的复杂性,这一领域并没有得到广泛的实际应用。因此,本文主要对上述几个方面做一简单介绍,以期引起大家的兴趣。至今,关于MIMO系统的功率分配,已有大量的研究文献。许多学者从各自独特的角度对这一议题进行了深度的探讨和研究,并已获得了令人振奋的研究成果。事实上,如果我们不对具体的计算流程进行深入的研究,并从信息论的角度来审视这些算法,会发现它们都与最大定理有着紧密的联系:在没有限制功率的情况下,当功率分布函数呈现均匀分布时,系统的容量会达到最大值;当存在一个或多个发射功率受限的情形时,系统的平均吞吐量也将受到制约。当平均功率受到一定限制时,采用正态分布的功率分布函数可以使系统的容量达到其最大值。因此,通过对功率分布函数进行适当地变换就能得到任意形状、不同参数条件下系统所需满足的一个或多个约束条件,即最大准则。在此背景下,最大定理是基于此原理而提出的,它能够描述功率分布函数在任何特定情境下的特性,从而赋予各种算法更广泛的适用性。本文正是以此为出发点,通过对几种经典算法的深入剖析,揭示了其各自适用于不同情形的本质原因。现有的这些算法大多是建立在这一核心思想之上,但在分析方法和视角上,它们之间确实存在一定的不同。
1.2MIMO系统文献综述
在传统的对称天线设计中,估计下行信道主要采用了两种策略。一种是利用时域方法对上行信道进行估计,另一种是利用频域方法对下行信道进行估计。在时分双工(Time Division Duplexing TDD)模式中,上行和下行的信道具有互操作性。通过对这两个信道进行互相关运算得到上行信道估计值。基站能够根据接收到的用户导频信号来估算下行信道,这样做的代价是相对较低的;在Frequency Division Duplexing FDD(频分双工)模式中,由于上行和下行的通信频率存在差异,这导致信道之间无法实现直接的互易。因此,有必要引入一个反馈信道,这样用户可以方便地向基站提供信道信息。因此,两种无线传输模式分别对应着不同的信道估计值。然而,不管是在哪一种双工模式中,基于非对称收发架构的信道估计都呈现出新的特性。在TDD模式中,尽管存在信道的互易性,但由于上行信道只使用了部分天线进行接收,因此不能直接从估计出的部分上行CSI中获取完整的下行信道。这使得信道估计面临着巨大挑战。值得庆幸的是,在未来的毫米波通信和大型MIMO阵列技术中,信道将展现出空间上的稀疏性[19],即便在FDD模式中,这种稀疏性在空间上也会表现出互易性(如角度互易性)[20]。因此,本文研究了利用这类特征来获得更为准确的信道估计值。利用这一特性,我们能够把原先的信道估计难题转变为一个有限的参数估计挑战。鉴于其稀疏的特点,文献[19]的作者在射频链受限的背景下设计了角度的选择和估计方法,而文献[20]的作者则推出了在TDD/FDD模式中的统一信道估计技术。这些方法都使用一个对称天线作为发射单元。然而,在非对称架构中,上行阵列的数量明显少于下行阵列,这导致上下行阵列在信号来波方向(Direction of Arrival DOA)的分辨能力上存在差异。另外,由于天线数量增多带来的波束成形误差,以及多径效应等原因,使得上行通道的功率谱密度分布不再均匀,从而降低了下行信道估计精度。通常情况下,一个更大的阵列代表着更高的空间解析度,因此,上行空间分辨率的降低可能会直接影响下行信道的估计准确性。此外,由于对称结构基站和用户之间存在较强的干扰影响,使得下行信干噪比降低,从而使下行链路的性能严重恶化。为了评估并补偿上行空间分辨率降低导致的信道估计精度损失,文献[14]为文献[18]中的非对称收发架构设计并分析了完整的收发流程,同时提出了一种改进算法mNOMP(modified New tonized OMP),该算法基于正交匹配追踪(Orthogonal Matching Pursuit OMP)算法,能够实现较高精度的下行信道重建。然而,在文献[14 19]中,上行接收天线的选择都是预先设定并固定的。文献[14]对均匀阵列、连续阵列和随机阵列三种天线选择方法进行了比较,结果显示随机阵列在信道恢复方面表现最佳。但值得注意的是,其提出的m NOMP算法的精度与所需的精炼次数直接相关,精炼次数越多,所需的精度越高,所需的算法时间也就越长。另外,通过随机选择阵列的方法,重建信道的空间稀疏程度并不能得到有效的保证。本文将研究目标聚焦到下行通信链路的波束形成方面。为了更有效地利用空间的稀疏性,非对称系统需要用更少的天线数量来获得更好的信道参数估计效果。因此本文基于非对称收发架构对下行发送和接收端进行设计以提高估计性能,同时降低复杂度。在非对称的接收和发送架构中,选择上行天线基本上是一个阵列布局的问题。因此,合理的阵元位置分布可以使接收到更大范围内具有相同幅度和相位信息的子载波以获得更优的信道容量。在文献[14]里,简单的阵列布局方式不可避免地引发了角度分辨率的降低和空间谱的泄露等一系列问题。因此,有必要研究一种具有更高分辨率和低复杂度的阵列结构。针对这一问题,本研究计划引入具有较高DOA分辨率的稀疏阵列,并结合一些已经成熟的空间估计技术,例如OMP、多信号分类和压缩感知等,以实现信道参数的高精度估计。
1.3选题研究路线,研究方法
在无线通讯领域,特别是在MIMO(Multiple-InputMultiple-Output)系统里,分配注水功率被视为一种提高信道容量的有效手段。该策略能够根据用户需求以及信道状况来调整发送功率大小。该系统利用信道状态信息(CSI)作为基础,根据各子信道的质量差异来动态分配传输功率。注水功率分配的目的在于提高整个通信系统的性能。核心的策略是为信噪比(SNR)更高的信道(即高质量的信道)分配更多的功率,而在信噪比较低的信道上则分配更少的功率,这有助于提高整个系统的数据传输速度。注水算法是通过计算每个用户的平均接收信号与参考信号之间的差值来实现的。这一思想起源于“注水”这一形象的比喻,意味着就像向不同高度的容器注入水一样,向不同质量的信道注入不同数量的功率资源。
MIMO(Multiple-Input Multiple-Output)技术是无线通信领域的一种技术,它通过使用多个天线来进行数据的传输和接收,从而在空间维度上提高无线通信系统的容量、可靠性和频谱效率。它的核心理念包括:空间的分集技术、空间的复用技术、编码与预编码的结合、信号的独立处理以及多用户MIMO的应用。
本研究使用MATALAB进行注水功率分配,通常涉及以下几个关键步骤:收集信道数据、定义相关参数、计算信噪比、实施注水功率分配算法(该算法是基于每个信道的SNR进行动态功率分配)、评估其性能、进行优化和迭代。我们还使用MATALAB软件对信道容量进行了仿真分析,并对这些仿真数据进行了比较,以研究在不同环境条件下信道的特性以及这些特性如何影响MIMO性能。
2MIMO系统介绍
2.1MIMO系统的概念
MIMO技术的核心是利用多个发射和接收天线来达到空间与时间的分集效果。此技术可以显著增强通信的容量,并减少信道传输时的功率损失。因此,在无线通信中有着广阔的应用前景。MIMO系统的概念是非常直观的:只要一个无线通信系统的发送和接收端都采用了多个天线或天线阵列,那么这个系统就可以被认为是一个完整的无线MIMO系统。该设备拥有高的频带使用效率和频谱使用效率等多项优势。MIMO系统的核心工作机制是利用发射端和接收端的众多天线来进行信号的发送和接收,这种方式能够显著提升每位用户所享受的服务品质,这包括了提高误码率和数据传输速度。随着人们对无线通信需求不断增加,如何利用有限资源为不同业务提供优质服务成为通信领域中研究热点之一。MIMO技术的核心是对空时信号的处理。由于空时码具有较低复杂度及良好性能等特点而得到越来越多研究人员的重视。作为一种创新的信道编码技术,空时码在最近几年里得到了广大的关注,并实现了显著的进步。本文提出一个基于空时分组编码的多用户无线通信系统。该通信系统采用了一种特殊的分立式多天线设计方案,即各天线间的距离足够远,并且从发射天线到接收天线的信号传输可以被视为是相互独立的。这种设计有效地将通信链路拆分为多个并行的地子信道,从而显著地提高了通信容量。
2.2MIMO技术分层空时结构
经过研究,我们发现在多径信号存在的环境中,使用特定的处理框架能够提高信道的传输能力。因此,在当前的无线通信领域,如何有效地提升通信速度已经变成了一个紧迫的议题。本文提出一种基于分布式接收技术的无线资源分配算法,该算法使用了分层空时结构。分层空时结构(BLAST)系统的模型设计如下:发送端会将多个用户的数据串变到多个发射天线上,然后同时、并行地发送这些数据,利用多输入和多输出的方法模式,在同一频率上传输并行数据流。由于每个用户都具有独立的发射功率,所以该协议能够实现多用户分集而不需要共享频谱资源。这个方案能够有效地抑制信号的衰减,从而提升传输的速度。当信道出现强烈的散射时,接收端可以采用BLAST算法来恢复初始信号,但这需要发射的天线数量少于接收的天线数量。本文提出了一种新的基于空间分集技术的自适应调制解调算法,它采用正交匹配追踪算法对接收数据进行估计和处理,并通过迭代方式实现快速收敛。这种算法因其较小的计算需求和较低的复杂性而受到了广大的欢迎和应用。在接收机中,BLAST信号处理算法是至关重要的组成部分。解调技术则是实现这种处理方法最常用的手段之一。这篇文章详细描述了几种常用的解调方法以及它们的独特性质。并对其进行了详细的分析与比较,指出各种方法之间的优劣性和适用性。BLAST的核心理念可以在相应的图示中找到。

图2-1分层空时码的一般性原理框图
BLAST可以根据其不同的构造方式被分类为8对角结构(DiagonalBLASTD-BLAST)、垂直结构(VerticaI BLAST V-BLAST)以及水平结构(H-LAST)。其中对角结构是一种特殊的斜交网格系统,它既能满足对等精度和全视场要求,又具有良好的稳定性。接下来,我们将通过对角结构来进行详细介绍。
假定有4 4路数据流在4根天线上进行循环传输,例如:第一路数据a1在天线1的时间t1被发送,而在天线2的时间t2被发送,这四个时间段完成了一轮循环传输;第二路数据b1是在天线2的特定时间t1中传输的,而在天线3的特定时间t2中进行传输,这四个时间段组成了一个完整的循环过程;按照这个逻辑推断,正如图2.2所示。对于每个发射机,根据其所在信道中所包含的所有天线数目,计算出相应于此接收机的发射功率。针对每一个接收天线,我们可以通过评估是否有与其发射信号一致或不同的接收信号来判断该天线是否存在误差。这种错误可以从发送端和接收端同时被发现。在接收端,处理对角检测的方法也是建立在对角线上的。因此,在整个系统设计过程当中都需要用到对角线的检测功能。为了确保所有通道的数据都被准确地检测出来,我们需要使用多种不同的技术手段,但这种方法可能导致结果出错,从而带来不必要的损害。针对这一情况,提出了一种简单有效的检测方法——最大似然检测法,它不需要任何先验知识。例如,当前的工作重点是处理第一路数据a1a2…a4图中对角线上方的数据,这些数据尚未被检测过,而对角线下方的数据则是已经被检测过的。因此,在这个问题上,本文提出了一种简单实用的方法。为了降低计算的复杂性,我们引入了一种独特的算法,该算法使用已有的信号来判断新输入序列中的各个点是否为零或是否存在噪声等干扰源,并确保这些干扰源的值与之前的测量结果一致,从而获取所需的数据。对于每个采样周期,我们只需要一个时间戳作为起始时刻。当处理时间t1的数据a1时,我们采用了干扰抵消技术来中和已经检测到的b1 c1 d1,接着我们对a进行了更深入的分析;若不位于这个位置,那么可以直接从发射的一端开始进行检测。当需要更多的信息时,可以先把它转移至接收端,然后再由接收端根据接收到的数据和发送端的相关参数来决定是做还是不作检测。在处理时间t2的数据a1时,我们首先采用干扰抵消法来消除已经检测到的b1和c1,接着使用干扰置零法来消除未检测到的d,最终进行a1的检测,如此继续。为了克服由天线方向图和噪声等原因带来的误差影响,本文还提出一种基于空间相关特性的自适应算法来抑制非均匀性造成的测量误差。这一技术在某种程度上解决了由于信道状况改变导致的信号扭曲问题,从而提升了信号与噪声的比例,并优化了系统的传输效果。该技术是将调制方式和编码形式分开处理,从而降低了硬件成本。由于发射机采用了具有周期性变化的结构设计,这有效地避免了因某一数据通道条件不理想而导致的连续误码问题,从而避免了对接收机整体性能的负面影响。

2-2 D-BLAST原理示意图
2.3本章小结
本章主要阐述了MIMO技术的基本概念和工作原理,并从其有效性和可靠性的角度出发,重点介绍了空间复用技术和空时编码技术。其中,空间复用技术主要采用贝尔分层结构,能够显著提高数据传输的速率,而空时编码则通过利用空间分集,可以实现极大的编码增益和分集增益。‚

3MIMO通信注水功率分配算法
3.1MIMO信道模型
在对MIMO系统进行研究的过程中,人们通常会考虑到离散时间下的无记忆基带信道。本文将对连续时域和频域的随机调制信号进行分析。这个信道可以被视为波形信道的时间抽样,在这个过程中,每一个符号周期都会进行一个抽样。在这个环境下,我们专注于研究平坦衰落信道的模型。由于传输信号与接收信号强度之间存在非线性关系,即所谓的相位相关。因此,信道的衰减在某种程度上对传输信号的振幅产生了乘法效应。在MRxMT,(其中MR为接收天线的数目,MT为发送天线的数目)的 MIMO 系统中,为了不失一般性,假设MR>MT,信道是平坦瑞利衰落,且信道冲击响应为HMRxMT,(MR行,MT;列)矩阵,HMRxMT;中每个元素hI,J(第i行,第j列,i=1,2,….MR,j=1,2,….MT)都是独立同分布的复随机变量,它的实部和虚部都是高斯随机变量,且均值为0,方差为1/√2. 系统模型如图 3.1所示:

图3-1MIMO系统框图
3.2功率注水算法
注水算法基于特定的标准,并根据信道的实际情况对功率进行自动分配。通常在信道条件较好时,它会增加功率分配,而在信道条件较差时,则减少功率分配,以实现传输速度的最大化。本文通过在接收端引入反馈机制,以提高系统性能。为了实现功率的“注水”分配,发送端必须了解CSI。
在接收端对信道有完全的了解,而发送端对信号一无所知的情况下,在发送天线阵列里进行功率的平均分配是合适的。本文通过分析发射天线阵列和接收天线阵列在不同情况下对信道容量影响程度,得到了一个新的最优分配原则——最大似然准则。在发送端了解到信道的情况下,有可能扩大信道的容量。
考虑一个维的零均值循环对称复高斯信号向量,r为发送信道的秩。向量在传送之前被乘以矩阵()。在接收端,接受到的信号向量y被乘以。这个系统的有效输入输出关系式由下式给出:
(3.1)
图3-2算法流程图
其中是维的变换的接受信号向量,是协方差矩阵为的零均值循环对称复高斯变换噪声向量。向量必须满足已限制总的发送能量。
可以看出
,i=1,2,…,r (3.2)
MIMO信道的容量等于一个平行的SISO信道容量的总和,由下式给出
(3.3)
其中(i=1,2,…,r)反映了第i个子信道的发送能量,且满足。
为了最大化互信息,我们可以在子信道中分配可调整的能量。在这个意义上,我们把一个给定信号称为该序列的最优解或最大似然估计。如今,如何最大化互信息已经成为了一个问题:
(3.4)
最大化目标在变量中是凹的,用拉格朗日法最大化。最佳能量分配政策 (3.5)
(3.6)
注水算法:
Step1:迭代计数p=1,计算
Step2:用μ计算,i=1,2,…,r-p+1
Step3:若分配到最小增益的信道能量为负值,即设,p=p+1,转至Step1.
若任意非负,即得到最佳注水功率分配策略。
3.3注水算法在MIMO系统中的应用
在已知发射端的CS的情况下,我们有必要调整输入的概率分布,并对功率分配策略进行优化,以实现信道互信息量的最大化。在这种情况下,每个用户可以根据其传输性能来确定相应的最佳发射功率值。在MISO系统和MIMO系统中,发射端存在多个由发射分集引发的空间分布并行数据通道,这些通道在频(时)域的响应特性上各有差异。由于传输信号的不同,它们在频域上具有不同的频率特性,这使得接收端接收到的数据也有所不同。因此,对于这些具有不同特性的子信道,进行理想的功率分配显得尤为重要。因此,为了提高MIMO系统的信道容量和数据传输速度,我们需要深入探讨如何更有效地调整功率分配策略。在这一背景下,人们提出了许多关于功率分配方面的理论与方法。这篇文章主要探讨了在多天线系统中,如何通过不同种类的发射站来达到最佳的功率分配效果。本文主要针对信息理论中关于功率分配方面的内容展开了深入的研究与探讨。首先,我们将对信息论1151中的经典功率分配方法,即注水(Water-Filling)算法(也称为WF算法)的基本原理进行简要说明,并进一步解释该算法在MIMO系统中的实际应用情况。
在MIMO系统里,主要任务是依据系统内各信道的独特性质,在空间维度上对其各子信道实施功率“注入”和总功率的重新分配,以实现信道容量的最大化。通过应用WF算法,我们可以得出以下信道容量的数学表达式:
(3-7)
其中声为各信道所分配的功率。M为信道特征矩阵H的秩‚‚‘为H矩阵的奇异值。为基带噪声功率。我们可以对这一结果进行推导。并实现注水算法在MIMO系统中的应用。
4仿真结果分析
4.1注水算法和平均功率分配的性能比较
我们模拟了使用注水算法进行功率分配和平均功率分配的单用户MIMO信道的容量。为了说明在不同信道环境下该方法的有效性,我们将第三章中提出的两种算法进行对比分析。基站的发送天线数量为4,而移动台的接收天线数量为2,平坦衰落信道的相关参数来源于第二章中的MIMO信道策略。在本文中,我们将使用一种新的基于注水算法的均衡方法来获得最优的均衡器输出。从图4-2可以观察到,在信噪比较低的信道环境中,注水算法计算出的信道容量明显优越于平均功率分配算法。然而,随着信噪比的增加,两者之间的差异逐渐减小,特别是在信噪比极高的情况下,两者计算出的信道容量几乎是一致的。

图4-1注水算法和平均功率分配算法信道容量的比较
4.2仿真分析
图展示了在不同的噪声水平下,注水算法的功率如何分配。图中所示为各通道接收信号与发射信号之间的相位关系。从图4中我们可以观察到:在信噪比更高的子载波上,系统会分配更多的功率,而在信噪比较低的子载波上,功率分配也会相对减少。因此,通过对注水算法中每个子带采用适当的调制方式来获得较高的频谱利用率,以提高注水效果。总体而言,该系统根据收集到的CSI数据来进行功率的自适应分配。
图中展示了注水算法的比特和功率分配状况。在每个子载波中,随着信道增益增大,其总发射功率也随之增加。从图示中我们可以观察到:比特的分配与信道的增益是正向关联的,当子载波的信道增益增大时,比特的分配也会相应增大,而在其他情况下,分配则会减少;当比特分配两个相同的子载波时,功率的分配与信道的增益成反比关系,信道增益越低,分配的功率就越大。

图4-2不同噪声下注水算法功率分配情况
下图展示了MMO通信注水功率分配算法的信道容量,其中“发1收1”意味着信号的发送端和接收端都使用了一个天线,其他情况也是如此。根据不同情况下信道容量变化量的大小来确定是否进行注水处理。如图7所示,随着信噪比持续上升,MIMO通信的注水功率分配方法可以显著增强信道的容量。同时,收发端天线数量的增加也会导致信道容量的逐步扩大。在发2收3和发3收2的场景中,这两种方法对信道容量的增强效果是相似的。
MIMO通信以及其他功率分配算法的信道容量如图展示。本文对这种功率分配算法进行了仿真研究,并与其它几种经典的等功率分配算法进行比较。从图表中我们可以观察到,当使用等功率分配算法时,信道的容量会随着信噪比的增加而明显增加;随着收发端天线数量的持续增长,使用等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值