人脸识别系统(源码+万字报告+讲解)

目 录
摘要 I
目 录 III
一、绪论 1
(一)研究背景及意义 1
(二)课题研究的国内外现状 3
(三)人脸识别的关键问题 5
二、人脸图像处理技术 5
(一)OpenCV 概述 5
(二)OpenCV 的主要模块及数据类型 6
(三)图像预处理 7
(四)图像边缘检测 8
(五)百度云人脸识别API 9
三、系统总体设计 11
(一)组成框图 11
(二)人脸录入分析 11
(三)LBPH特征提取算法的理论分析 13
四、仿真平台 16
(一)环境搭建 16
(二) 测试界面 16
(三)测试结果分析 18
五、总结与展望 19
(一)总结 19
(二)展望 20
参考文献 20

一、绪论
(一)研究背景及意义
随着人们整体生活水平的持续增长,个人和集体累积了众多的社交财富,这导致在经济上持有重要角色的银行网络逐渐扩大。银行自身就是资金的流动中心,因此银行的安全状况直接影响到整个社会的稳定。因此,我们日益认识到银行的安全隐患,银行设备和资产的复杂安全性亟需更加先进的安全防护与监视手段来确保。传统的手工管理方式已经无法满足现今日渐增多的银行业务操作的需求,因此,对现有的银行安全和监控系统进行升级改造显得尤为迫切。在银行系统中,现在正面临一个紧迫的难题,即如何有效地处理各类信息,例如视频、语音、电子文件等,这无疑对一个更加高效且智能化的管理与分析系统提出了巨大的技术要求。所以,将各式各样的业务应用与安全监控相结合,已经变成金融界迫切需要解决的一个重要议题。伴随计算机技术迅猛发展、网络条件不断完善和视频编码解码技术持续升级,新一代的智能视频监控体系应运而生。
智能监控系统拥有实时检测视频中物体的功能。这一系统能通过摄像头捕捉视频中的图像,自动解析每一帧的图像内容,达到目标物体的准确检测、位置定位、追踪和识别目的。这样做赋予了系统进行基础的常规管理活动的能力。另外,某些系统也能够针对被研究对象的行径进行深入的分析,以判定其是否构成犯罪,而当检测到异常状况时,系统会立即发布警报,并及时通知相关人员采取措施。
为了达到银行的智能监测目标,我们的系统必须与黑名单库比较,通过识别人的脸部特征来准确判断现场人员的身份,对其所作行为进行深入剖析,以便判断是否有任何非法操作,并基于此给出相应的警报反应。伴随着计算机技术的飞速进步,视频图像已经逐渐演变为人们获取各类数据的主要途径之一,并在各个社会环境中获得了普遍的使用。在许多实际应用环境里,智能视频监控系统的关键部分是针对视频图像里的目标对象进行深度的识别和探究,这也是现今智能监控系统最具说服力的解释。所以,对一个基于计算机视觉技术的自动面部识别方法的探索显得至关重要。在过去几年里,人脸识别技术在智能视频视频监控应用中的发展速率无疑是最快的。
人们的面部特征为我们带来了丰富的视觉资料,这些建在模式检测和计算机视觉等众多领域中都被广大研究者所采用。在当今生活和职场环境中,人脸被更广泛地用于身份认证的基础之一,因此,对人脸的准确检测和定位变得非常关键。如今出现的众多技术,例如面部识别与面部表情的识别,均是基于深入的人脸数据研究而得以实现的。伴随生物特性的检测和处理手段的进步,科学家们开始尝试运用这些技术来处理真实的问题,如确定身份以及进行行为验证等。人脸识别技术作为模式识别中的一个核心分支,已经吸引众多专业研究人员深入探索,并在此领域实现了许多显著的研究进展。
人脸检测程序涵盖了在静态图像或视频材料中确定人脸是否真实存在的步骤,并在确认存在的同时,详细展示人脸的总量、位置及大小等关键信息。作为生物的识别技术,人脸识别在众多的社会活动中获得了广泛的应用,包括但不限于智能监测、门禁控制和身份确认等领域。人脸识别方法涉及到对所检测到的人脸样本的深入剖析,以识别其在图像上的独特属性,并根据这些属性来识别个体身份。人脸识别技术融合了人工智能、模式识别等多个学科的特点,涉及范围广泛,包括计算机视觉、图像处理技术、模式识别以及生物信息学等。鉴于识别进行人脸常常依赖于进行人脸的辨识,有研究者开始将人脸检测整合进人脸识别领域进行更深入的研究和探讨。文章重点介绍并阐释了当前经常使用的几种人脸识别技术。简单来说,人脸辨认的核心思想与我们在试图识别对象时,常去大脑查看储存的信息有很大的相似性。在个体的认知活动里,记忆储藏库储存了关于特定事物或人物的详细信息。当这些信息与所识别的对象产生相关性,便会催生出一个全新的认知输出。智能人脸识别系统同样需要一个专用的数据库,然而,需要注意的是,这个人脸识别系统的核心库中储存的是大量的数据信息。在当前的背景下,如何有效利用计算机的现有资源和存储空间构建一个有效管理和保养这些数据的数据库系统已经变为人脸识别领域发展的主要挑战。在人脸识别系统中,数据库的构建大多基于对大量人脸样本的培训。因此,在进行人脸鉴别的流程中,首要任务是创建与该方法相对应的训练数据集。一般,我们将已经经过培训的文献称作为样板。如果我们打算用这些资料来构建系统,首当其冲需要处理的挑战便是如何选取恰当的样品数。观察从统计学的角度,随着样本数量的增多,这个数据库的精确度也逐渐增强,进一步提高了人脸识别的成功概率。随计算机科技及图像处理技术的逐渐成熟,人脸识别已经逐渐被视为模式检测领域的研究焦点。在早期的发展时期,大多数的人脸鉴别系统主要是用来处理静态的图片识别或者特定场所的位置来进行辨识。伴随着科技进步,人们能够发现大量的实时面部特征。在实际操作中,这种人脸识别系统常常受到周围环境的制约,因而实际应用上相对较为不够实用。计算机视觉技术的进步与完善已经使得我们可以采用机器学习技术来自动识别人脸,并且这种方式已经展现出相当的效果。此系统是在实时视频监控领域进行设计的,与静态的图像识别技术对照,其实际应用的价值更为突出。
本研究一开始就深度剖析了人脸识别与人脸识别的核心技术和策略。在这些研究基础上,我们在OpenCV平台上设计了一套针对银行监控需求的人脸识别系统,以实现更加高效和准确的识别过程。这一系统的组成元素包括了客户在前台的登录过程、摄像机的操控、关于人脸资料的储存和维护,还有后端的数据库管理等几个核心部分。此监视设备依赖网络摄像头实时检测现场的环境,服务器能够捕捉到前方网络摄像头捕捉的视频画面,并对这些照片进行人脸鉴定和检查。随后,客户端将会在其用户页面展示这些检测和鉴定的结果。当系统检测到有人闯入的情况下,会根据用户提交的个人信息以及当前所处的地理环境,来评估和判断是否存在可疑活动的人。一旦得到的识别结果达到了某些特定的评估标准,这意味着系统会迅速地发出警告,并通知相关职员。在此系统中,所有的用户身份信息将被自行保存。这个系统的工作表现非常稳定,并展现出优秀的人脸鉴别和检测功能,具备多种功能,尤其适用于银行监督系统。
(二)课题研究的国内外现状
自1960年开始,人脸识别技术的研究就始终是众人关注的焦点。伴随计算机视觉技术和生物特征识别等领域的进步,人脸辨识技术现已成为模式辨识、图像洞察、机械学习和人工智能等多个领域中非常核心的研究议题之一。在全球研究人员齐心合力下,人脸识别以及检测的相关算法经历了多次的完善和升级。特别随着计算机视觉与人工智能等相关技术的逐渐成熟,人脸识别和检测系统的准确性也逐步提升。而且,人脸识别技术正在持续进化中
随着岁月的推移,熟化和发展在我们日常生活中得到了更加广泛的应用。作为一项在生物识别领域极为重要的技术方法,人脸识别不仅受到了人们的广泛关注,而且也是计算机视觉科学中一个非常热门的研究主题。依据人脸识别技术的演变历程,我们可以概括把它划分为三个主要的阶段B41。进入第一阶段(1964~1990年)时,人脸识别技术的主要关注焦点是基于人脸的几何特性和利用人脸模板的技术进行识别。鉴于这两种技术均采用人类眼睛作为初始输入以进行数据特征提取与分类,因此,它们都展现出相当的实用性。不过,这两种技术在图像品质方面的标准相对比较高,其适用性不是十分理想,同时它们能捕捉的图像特征点也比较有限。在实际应用的场景中,这两种辨识技能很可能会引发重大的失误和遗失。
在第二研究周期(1991至1999年)中,所采纳的核心研究手段涉及代数特性为基础的识别手段和统计学理论为基础的技术。人脸由于其独有的生物学特质和特有的结构,这导致了统计理论为基础的人脸识别技术得到了快速的进展。在人脸识别中,使用代数特征的方法已被广泛采纳和应用,这种算法主要集中在图像特征的提炼上,但在现实应用中仍遭遇很多局限性和挑战。
在从2000年至今的第三个研究阶段中,该研究小组深入探索人脸辨识技术,并在此领域实现了众多引人注目的成果,同时在多个专业领域展现了成功的实践案例。由于生物识别中的人脸是一个显著特点,它的识别能力历来受到广大人群的重视,并在模式识别这一科学领域中占据了至关重要的位置。尽管有些因素存在,但在实际使用中,我们仍然可能受到外部环境的种种影响,例如光线的影响、脸部的表情变化和图片背景的多样性与复杂度等。所以,寻求途径来高效地增强人脸侦测和追踪系统的辨识率,已变得是当下一个非常关键且急切需要应对的议题。现在不论是在国内还是国外的研究机构,都在人脸识别技术这个领域取得了引人注目的科学成就。他们引入了一个新颖的生物特征检测手段:一种依赖于人脸数据来完成身份验证的系统。在此领域,多个世界著名的研究组织涵盖了如下学校:美国麻省理工学院(MIT)下属的媒体实验室、人工智能实验室、美国卡耐基梅隆大学(CMU)下属的机器人研究所、密西根州立大学(MSU)及耶鲁大学等。这些科研机构在人脸识别技术的发展上有着显著的影响和成就!他们针对这个问题,分别从各种不同的视角进行了解决,并提供了相应的方案。第56点。在这个过程中,由Pentand主导的MIT团队推出了EigenFace(特征脸)的新技术方案!这种算法被视为到目前为止最高效的人脸检查和鉴别方法,并在多个层面获得了显著的成就。编号7;在Jain指导下,MSU的科研团队对三维人脸辨识技术做了深入研究;在Kriegman的引领下,YALE的研究小组成功推动了如Fisher脸方法1等一系列相关技术的发展。本研究在这个前提下,对国内外近期在人脸特征抽取与辨认领域的主要科研成就进行了归纳与描述。这些研究技巧对于人脸识别的技术方向造成了长远且深刻的改变,并对该技术领域的未来趋势和利用带来了显著的标志性意义。目前,全球众多国家已经投入到人脸识别以及检测技术的研究与应用中,并已经取得了一系列突破性的进展。另外,国家如德国、日本、英国、韩国及新加坡等高等教育及研究的机构,在人脸识别这一领域也取得了显著的贡献。
与国外研究机构比较,我国在人脸的检测与识别领域的起步相对较晚,实际上在20世纪九十年代才开始涉猎到人脸智能识别的相关技术。随着科技在不断的发展和突破,我们国家的人脸识别检测系统已经快速地得到了普及和应用,并且已逐步地成为人们日常生活中不可缺少的一部分。虽然我们的起始时间还比较晚,但是多亏了许多科研人员的紧密合作,我国在人脸的检测与鉴定技术上也取得了很大的突破!这个创新的技术能够在众多复杂的图像环境中表现出卓越的适应性,并且无需人为地介入,从而增强了图像识别的准确性和处理速度。第九条-第一条。迄今为止,我国已涌现出很多在计算机视觉领域备受尊崇的高等教育研究机构和机构,例如清华大学、上海交通大学、南京理工大学哈尔滨工业大学、华中科技大学和中国科学院自动化研究所。引人注目的是,清华大学的科研团队在肤色侦测领域对于人脸识别技术进行了深化优化。他们实施了一套基于人脸的色彩与特点的新策略,并深入改进了这一策略,最终推出了一个自适应的人脸识别方案31。哈尔滨工业大学针对EigenFace和模板匹配进行了细致和深入的研究活动,并成功地构建了一个多层次结构的人脸识别和追踪系统。这套体系拥有出色的适应性,在众多和多变的背景情境中,能够准确探测多种角度和表情的面部特征,并能实时监测114。中国科学院自动化研究所的模式识别实验室在国内智能监控识别领域的进展中发挥了关键和重要的角色。该研究中,对于追踪和检测运动目标、分析人体行为以及智能地识别人脸,这是其研究的主要方向15,研究成果已被成功地应用在实际工作中,
在全球学术界,涉及智能识别技术的学术论著数量十分庞大,这极大地激励了更多学者进行深度的基础理论研究。这些研究成功地融合了多个前沿科学观点到智能识别的基础理论中,特别是在诸如国防、金融和交通这些关键领域,取得了显著的应用效果。
(三)人脸识别的关键问题
多亏了全球研究者的持续努力,许多人脸识别工具在某些特定环境状况(例如日光直射或背景色的人脸与摄像机相对)能高效地完成人脸的识别工作,并且识别的效果也被证明是非常出色的。伴随科技的持续进步,我们现在的人脸识别系统也日渐完善。但是,在真实的使用中,有些条件并不总是被完全满足的,特别是面向户外监控识别系统。由于外部环境的剧烈变化,目前的识别系统效率很可能会明显地下滑P1。如今,有一些大型的室外监测系统已经采纳了基于特征脸策略和深度学习框架的人脸辨认系统来增强其识别效能,但这些技术仍受到多种外部元素的影响,导致其效果不尽如人意。这一现象表明,目前的人脸识别技术还没有达到真正的应用标准。在许多方面,还存在待完善和改良的地方。

二、人脸图像处理技术
在图像的智能识别程序中,先对图像完成预处理成为了核心环节。这一章节开始先阐述了OpenCV的开源资源库,随后对基于OpenCV进行的图像处理技术进行了概述,重点包括图像的灰度处理、噪声的削减及边缘的检测技巧。
(一)OpenCV 概述
OpenCV,这个开源图像处理算法库7,是Intel公司的产品,其缩写为“OpenSource ComputerVision Library。这个数据仓库由多个C函数与一些C++类组成,不仅兼容多款图像处理和计算机视觉的通用算法,同时也为Python、Ruby、MATLAB这些编程语言提供了方便的接口选择。由于该库拥有出色的开放性,因此受到了很多学者的重视,并在众多领域中被广大研究者广泛采纳。此外,这个视觉库还特别设计为适应Linux、Windows以及Mac OS三种操作系统。由于它出色的算数功能,图像的切割和重新构建变得可行。OpenCV是一款专门为了优化处理能力而开发的应用程序,它在当前的实时系统中得到了广大的使用范围。并且,它可以通过经过优化的C语言编写代码,从而充分利用多核处理器的卓越性能。因其出色的功能特性,这项技术在当前的图像分析和处理领域备受欢迎。借助Intel的集成性能基元(IPP)库这一工具,我们能够对Intel的系统架构做出更深入的自动化优化。此方法将目标函数驱动的全球搜索技术与局域搜索算法相结合。尽管IPP库中存在众多的优化程序,但这些程序依然被视为切实可行的
OpenCV的增强作用有助于其性能的显著提升。其在函数调用和图像处理中的多样化与灵活性,为它在多个领域都提供了广大的应用机会。OpenCV因其多样且完备的函数接口,为计算机视觉技术的研发工作提供了一个迅速而高效的解决方向。这批函数在各种不同的行业都有着广泛的使用。OpenVC的库融合了大于500个°C函数,提供了大量多样的图像处理任务。在众多的子库包内,众多知名的图像分类方法被融合,比如最大似然法和贝叶斯网络技术等。另外,在OpenCV的系统中,通常设置一个全方位和普适性较强的机器学习数据库(ML),此子资源库的核心功能主要是用于统计模式的识别和分类。在OpenCV的核心视觉功能上,ML库展现了卓越的性能,同时也拥有应对多种机器学习困难的实力。PenCV的主要特点概述为:它采用C/C++构建开源计算机视觉库,主要的目的是开发能实时运行的应用程序。此外,这款设备具有多功能的用户界面和出色的程序兼容特性,可以轻松在各种平台之间迁移使用;涵盖自基础级别直至高级层次的应用程序开发工具集;该工具具备大量的功能工具,并有能力处理许多常见的图像。
(二)OpenCV 的主要模块及数据类型

在系统开发过程中,需要调用OpenCV中的多个块库,对于OpenCV中的数据类型需要有足够的掌握,因此有必要在此进行简要介绍。
1.OpenCV 的主要模块介绍
OpenCV主要是由五个核心模块组成,分别是"7 核心函数库(Cv)、数据结构与线性代数库(CxCore)、函数库(HighGUI)、机器学习函数库(ML)和辅助函数库(CvAux)。图2.1所示了前四个模块之间的相互关系。在这些模块中,Cv模块涵盖了基础的图像处理、图像结构分析、运动与跟踪、模式识别以及摄像机标定算法。而CxCore模块则包含了OpenCV中所有的基础数据结构、代数矩阵,以及数据转换、对象持续、内存管理、错误处理、代码动态加载、绘图、文本和基础数学函数。HighGUI模块则包括了存储和加载图像和视频的函数,以及用户界面GUI。例如,ML库是机器学习库,它包含了许多用于数据统计、分类和分析的函数,而CvUI模块则包含了存储和加载图像和视频的基本算法,但在某些嵌入式领域中是无效的。例如,在人脸/CV库中并没有,但在某些特定的场景下,如人脸识别(如MuU)是不存在的。

图2.1 主要模块

(三)图像预处理
由于外部环境因素的差异,如用于图像采集的设备性能不佳、现场照明的亮度不一致等,通常会导致图像出现噪声和低清晰度等问题。因此,对于含有各种噪声和模糊的图像来说,如何有效地检测出具有一定质量的人脸是一个非常重要的问题。另外,人脸在图像中的确切坐标和区域尺寸会因人与摄像头的距离而有所变化。这都将使得传统的基于肤色模型的特征提取算法不再适用于实际应用。为了确保从图像中提取的人脸特征不会受到前述因素的干扰,我们需要在开始提取特征人脸之前,先对整个图像进行适当的预处理。
1.灰度图像转换
鉴于彩色图像数据分析的难度远超过黑白图像,因此将彩色图像转化为灰度图成为图像预处理过程的首要步骤。通过研究发现,人眼对于彩色和灰度图具有不同的视觉特性。进行图像的灰度转换是智能识别技术的核心,通常收集到的图像都是由三个基本颜色(R、G、B)组成的。对于人眼来说,它可以分辨出物体中不同颜色的区域,而人耳却无法区分出这两种色度的区域,因此通过计算人眼与人耳所对应的位置来确定其身份。为了加速运动目标的检测速度,在进行特征抽取之前,人脸图像需要经过灰度化处理,这意味着只需对像素点的灰度值作出相应的调整。
2. 图像噪声消除
视频通常被视为一系列连续的图像。在视频的采集、存储和传输过程中,经常会遭遇噪声的干扰。这种噪声可能导致图像的失真,使其不能像以前那样均匀和连续地变化,从而对后续的图像处理带来不利影响。如果不及时去除噪声,就会降低识别性能。因此,在进行视频图像的检测和分析之前,有必要对输入图像进行噪声削减,以最大限度地减少图像中的噪声干扰。这不仅有助于更准确和迅速地识别图像的特性,还能更有效地进行模式识别和其他复杂任务,同时也能降低目标检测所需的计算资源。根据影响图像质量的不同噪声源,图像噪声可以被分类为三个不同的类别。在第一种情况下,由于阻性元件内部电子的自由热运动产生的电子噪声,通常采用零均值高斯白噪声模型进行近似处理。该噪声主要是由器件表面和芯片上的热阻造成的。第二种类型是由光电转换产生的泊松噪声,也称为椒盐噪声。这类噪声通常用随机脉冲函数进行模拟,它具有非平稳性、随机性及随时间变化等特点。第三种类型是,在光感应过程中产生的颗粒状噪音。第四类是由热效应或机械应力而引起的振动噪声。基于噪声与信号的相互关系,我们可以将噪声分类为加性噪声和乘性噪声。加性噪声主要由人为噪声、自然产生的噪声以及内部产生的噪声构成,其主要的表现形态包括脉冲噪声和高斯噪声。第四类,由于灰度分布不均匀而造成的随机噪声。乘性噪声通常是随机的,它是图像中最常见的一种噪声,其中光照变化是一个典型的代表。因此在图像去噪时需要考虑光照影响,采用适当算法去除光照效应引起的噪声,从而提高去噪效果。OpenCV用于消除图像噪声的常见技术包括:均值滤波、中值滤波以及高斯滤波方法。在去除光照影响后,通过计算直方图峰值确定阈值分割出感兴趣区域并进行相应操作即可得到最终结果。均值滤波在抑制高斯噪声方面表现出色,而中值滤波则更适合处理椒盐类型的噪声。
(四)图像边缘检测
在执行图像的目标检测过程中,图像的边缘部分成为了关键的信息提取手段。本文首先介绍了一种新的基于数学形态学梯度算子和多尺度小波变换相结合的方法来获取图像边缘信息。从人眼的直接感知来看,目标图像中的边缘特征最为突出,而在整体图像中,图像边缘的变化差异也是最为显著的。因此,利用图像处理技术和算法来获取并分析图像边缘具有非常重大的意义。在提取图像的边缘时,主要的标准是目标边缘的像素灰度值会有较大的波动。为了得到清晰的边缘特征,通常需要使用低通滤波技术。图像的边缘通常位于前景物体和背景图像的交叉点,因此通常会使用高通滤波器来保留高频信号。
常见的边缘检测技术包括:梯度边缘检测、差分边缘检测以及Sobel边缘检测算子Laplace边缘检测算子等。其中,在图像处理中应用比较广泛的是基于数学形态学和小波变换的两种边缘检测方法。在OpenCV中,用于边缘检测的常见函数包括:cvSobel0、cvLaplaceO和cvCannyO。在图像处理中,用不同类型的图像进行边缘提取时需要使用不同的算法。接下来,我们将概述边缘检测的详细流程,并对本文采用的Canny边缘检测技术进行深入分析。
1.图像边缘检测的步骤
图2.2所示了图像边缘检测的核心步骤。一、图像预处理在处理一幅图像之前,需要先将其输入计算机。接下来,我们将对每一步进行简洁的阐述。在获取原始图像之后,首要任务是对该图像进行滤波处理,这样做有助于保留图像中的高频信号,从而更好地进行图像边缘的检测。

图2.2 边缘检测的基本步骤
但是,图像滤波处理不可避免地会使图像的边缘强度减弱。这在一定程度上影响了图像去噪和细节保留能力的提高,从而使得最终得到的视觉效果较差。因此,图像的增强处理是必要的。为了解决这个问题,可以利用直方图来实现图像的平滑去噪,并在此基础上再结合对比度调整和亮度均衡等技术来完成图像的增强。这种方式能有效地突显图像中灰度值有显著波动的像素点。本文针对不同情况下的图像处理提出相应的图像增强算法。在图像增强技术中,直方图修正法是最常被采用的方法。图像的直方图直观地所示了图像的灰度值信息。通过对原始图像直方图的修改,我们可以对其灰度级进行调整,从而拉开灰度级集中的区域,实现图像灰度的均匀分布,这不仅可以增强图像的对比度,还能使图像的边缘更为突出,从而达到图像增强的目的。
(五)百度云人脸识别API
在开发人脸识别系统的过程中,充分利用第三方API能够显著提高开发的效率和识别的准确度。近年来,随着人工智能技术的快速发展,各种智能应用层出不穷,为用户带来更多便利与体验。百度云人脸识别API因其高效率、稳定性和易于集成的优势,赢得了众多开发者的喜爱。目前,该应用已经成功部署于多个行业领域。百度云人脸识别API为用户提供了一系列丰富的人脸识别工具,这包括人脸的检测、关键点的定位、属性的分析以及人脸之间的比对功能。开发者只需要简单地调用API,就可以在系统中整合这些功能,从而实现高效的人脸识别。此外,用户还可以利用百度云平台上已开发出的相关算法来构建自己的模型,以达到快速建模的目的。当开发者想要使用百度云人脸识别API时,他们首先需要在百度云上注册一个账号,并开发出对应的人脸识别应用程序。随后,用户可以选择指定一个或多个摄像头采集图像,并将其存储至本地数据库。接下来,你可以利用API的密钥来验证自己的身份,并开始使用API来执行人脸识别的任务。此外,开发者还可根据实际情况定制相关功能模块,从而为开发其他应用程序提供数据基础。API提供了一个简洁明了的使用流程,并附带了详尽的文档和示例代码,以便于开发者能够迅速掌握。此外,还可根据不同需求实现多种功能。借助百度云人脸识别API的应用,开发人员有能力搭建一个更为智能和高效的人脸识别解决方案。不管是在安全监控、身份验证,还是在人与机器的交互等方面,都能展现出极大的价值。因此,在未来的生活与工作中,我们需要借助人工智能技术来实现对人的识别以及管理,进而更好地保障人们的人身安全。与此同时,随着人脸识别技术的持续进步,我们有理由相信,未来百度云人脸识别API将为开发人员带来更多的创新和可能性。本文对基于百度云人脸库进行人脸识别相关研究与分析。在人脸识别系统的开发过程中,百度云人脸识别API展现出了巨大的应用潜力,广大的开发者应当对其进行深入的研究和实际应用。

三、系统总体设计
(一)组成框图
本研究构建了一个智能化的交互式人脸识别系统,其核心功能包括人脸输入、识别、UI测试界面以及语音播报,该系统的结构框架如图3.1所示。

图3.1 系统结构组成框图
(二)人脸录入分析
当该系统开始使用人脸输入功能时,它首先可以利用摄像头对当前的图像进行人脸识别,并将这些检测到的人脸数据输入系统中。接下来,系统会利用特定算法对人脸特征进行提取和训练,并将这些训练好的人脸数据保存在系统的内存中,从而创建一个人脸信息数据库,这有助于提高系统的人脸识别能力。当用户在系统界面输入需要识别的人脸后,系统会自动对采集到的人脸数据进行分析,判断其是否与预先设置好的标准相匹配,图3.2所示了系统的设计流程。

图3.2 系统设计流程
该系统首先启动摄像头,利用它来捕获图像数据,并将这些图像信息进行转化。接着,系统会对这些图像进行人脸识别,其中人脸识别主要涉及特征目标的识别,并选择显示被判定为人脸的区域框。根据人脸的大小和位置确定是否要框选择,从而将其作为最终结果输出给用户。在实现人脸检测功能时,我们采用了OpenCV中的级联分类器来构建多级检测机制。通过这种机制,在检测图像中的人脸时,图像会依次经过各个分类器。在检测过程中,如果任何一个分类器没有检测到人脸,那么被检测的图片就不会有人脸。如果检测到的人脸图片通过了所有分类器的检测,那么被判定的人脸区域将会被框选出来显示。当检测到的人脸有可能出现遮挡情况时,则需要重新选择新的分类器。如此一来,人脸识别功能便得以实现。
在构建级联分类器的过程中,我们使用OpenCV软件中已经训练完成的分类器,并根据具体需求和使用环境来自我进行相应的级联分类器4的训练。通过对图像进行分割、特征提取等操作后提取出有效信息并将其与已有样本结合起来构成一个新的分类模型,从而提高人脸识别率。OpenCV的分级分类器包括局部二值模式(LBP)特征检测器和Haar特征检测器!这两种检测器可以很方便地对图像进行检测,关于人脸检测器的实验数据比较(1000张图片),请参见表3.1。
表3.1 人脸检测器实验数据对比结果

从表3.1可以看出,LBP特征检测器在检测率和误检率上都稍逊于Haar特征检测器。但LBP特征检测器在图片检测上的时间明显短于Haar特征检测器,因此,我们的系统选择了检测时间更短的LBP特征检测器。
当我们使用进行人脸录入功能时,有必要创建一个人脸信息的数据库。该数据库主要由人脸数据和人脸特征组成,并对人脸数据进行预处理以提高识别速度。系统在接收到一幅图像之后,会利用经过训练的级联分类器来进行人脸识别。一旦人脸检测成功,系统会从图像中提取人脸的特征进行训练,并将这些训练好的样本存储在人脸数据库中,以支持后续的人脸识别工作。
(三)LBPH特征提取算法的理论分析
LBPH特征提取技术能够捕获各种表情和状态的图像,并从图像库中提取人脸的特征。通过对每张图片的面部特征进行平均提取,我们可以计算样本库中某一人与被测者之间的人脸差异。特征差异越小,匹配的相似度就越高。最终,这种方法可以成功地识别他人的脸部。
LBPH算法的运算符最初仅适用于矩阵尺寸为3×3的情况,并以矩阵的中心点像素点作为基准。通过比较中心参考点与其周围剩余的8个像素点的大小,判别结果可以用1来表示大于参考点,而用0来表示小于参考点,具体的计算公式如下所示。本文给出了一种新方法,把计算过程转化为对所有像素进行一次累加运算,从而得出一个与之相应的八维编码方案,并将此八维码应用于图像分类中。经过对比,我们得到了8个二进制编码,将这些二进制转换为十进制便得到了LBP特征值,具体的计算方法可以在公式中找到:

式中:(xc,yc)是矩阵中心特征值;i是参考点的灰度值;i。是周围对比点的灰度值
由于LBPH算子的采集点区域是固定的,当人脸图像的尺寸较大时会发生变化,这对特征识别造成了较大的偏差,不能正确识别别人脸图像的像素点信息。针对上述问题提出了一种新方法。为了更好地适应从不同角度和方向采集的人脸图像特征,我们对原始的LBP算子进行了优化,并将矩阵区域替换为圆形邻域。同时根据人脸表情变化特点,提出了一种基于旋转不变特性和局部方差约束的人脸识别算法。通过这种方式,我们能够在圆形区域内识别出任意多个特征点,进而从多个角度识别人脸图像,从而显著提升识别的准确性。
设圆形区域的半径为r,则有n个采样特征点的LBP算子计算公式如下:

在这里,(xt yt )代表了某一特定时刻的取样位置;(xd yd)代表圆形区域的中心参照点;N代表的是总的采样数量;这是与之对应的第一个采样点的数值。“给出了基于最小二乘法拟合得到的一个新公式。该方法通过对人脸图像进行二值化处理来实现人脸识别,可以减少计算量和时间复杂度。在此基础上提出一种改进的双线性插值模型。通过公式计算得出的采样点坐标为整数,而人脸图像的坐标点并非完全整数。通过使用双线性插值优化的LBP方法进行进一步的优化,使得坐标点的准确性和识别精度都得到了提升。实验结果验证了该方法的有效性和可行性。双线性插值LBP改经算法用于计算采样点的坐标值,如公式所示:

LBPH算法的核心思想是,首先将摄像头捕获的图像转化为灰度图像,然后将这些灰度图像细分为多个小部分。接下来,利用LBP算子对这些图像进行处理,似乎处理完成后可以得到与灰度图像相对应的LBP值。通过这些LBP值,系统能够绘制出反映人脸特征的LBP统计直方图。最后,将经过统计的训练集LBP统计直方图与测试集统计直方图进行对比,如果得到的结果与测试样本非常接近,那么这个测试样本就是人脸识别的结果。LBPH特征识别的算法流程如图3.3所示。

图3.3 LBPH算法流程

四、仿真平台
(一)环境搭建
1、需要的硬件环境
虚拟机
带有摄像头的电脑
2、整体项目的框架
用Opencv识别人脸,上传百度云进行识别对比
3、虚拟机上需要装的库
sudo apt-get install libopencv-dev,验证是否安装完成dpkg -s libopencv-dev
Opencv官方文挡:https://opencv.org/
百度云SDK中需要的依赖库也装在虚拟机上:(百度云的SDK去官网下载即可,版本:aip-cpp-sdk-0.8.1)
sudo apt-get install libcurl4-openssl-dev,验证安装是否成功dpkg -s libcurl4-openssl-dev
sudo apt-get install openssl,验证安装是否成功dpkg -s openssl
sudo apt-get install libjsoncpp-dev,验证是否安装成功 dpkg -s libjsoncpp-dev 版本>1.7.2
sudo apt-get install libssl-dev,验证是否安装成功 dpkg -s libssl-dev
4、百度云中的环境搭建
https://cloud.baidu.com/product/face/search 百度智能云 人脸识别(人脸搜索)
立即使用:
https://login.bce.baidu.com/?account=&redirect=http%3A%2F%2Fconsole.bce.baidu.com%2Fai%2F#/ai/face/overview/index
创建应用—名称自己起名字----接口选择(默认人脸)—应用归属(个人)–应用描述(随便写就行),点击查看人脸库—新建组(名字自己起)–点击自己的名字–新建用户-用户id(名字-拼音)–添加图片(清晰的),上传完之后确认—添加其他的人脸一样操作—完成。
(二) 测试界面
在本研究的系统主界面中,我们需要设计两个功能按钮,一个用于进入人脸录入界面,另一个用于人脸识别界面。通过这两个功能按钮,用户可以分别访问人脸录入界面和人脸识别界面。在进行操作时必须先打开人脸输入界面,然后再按下相应的图标即可完成对图像信息的输入。在按下人脸输入按钮之后,你会进入到人脸输入的界面,这个界面的设计与图4.1所示的非常相似。

图4.1 人脸录入界面设计
在人脸录人的界面设计中,左侧的显示框用于所示摄像头捕捉到的图像,而右上角的左指箭头则是一个返回键,用于将图像返回到主界面。下方的选择和删除按钮则用于选择和删除已存储的人脸名称信息。接下来,下方的白色名字输人框用于输入即将被录入的人脸信息的名字,而名字输人框下方则是一个信息提示框,用于确认人脸录人操作是否成功。最后,最底部的开始录人按钮则是用于启动人脸录人功能,并开始将当前的人脸信息录入到系统中。在主界面上有一个人脸照片输入区,该区域是通过鼠标点击来控制其操作。从主界面,你还可以进入人脸识别的界面,该界面的设计如图7所示的那样。从前面介绍了主控板和各个功能模块之后,接下来要介绍一下人脸识别模块。在人脸识别的界面设计中,左侧的显示框用于所示摄像头捕捉到的图像,而右上角的左指箭头则作为返回键,用于将图像返回到主界面。接下来,第一个白色显示框用于所示识别人脸的名称,而第二个信息提示框则用于所示人脸识别的成功与否。最后,位于最底部的开始识别按钮将启动人脸识别功能,并开始将当前的图像输入到人脸识别过程中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值