剑指Offer书中写到这样一条面试小提示:
由于计算机表示小数(包括float和double型小数)都有误差,我们不能直接用等号(==)判断两个小数是否相等。如果两个小数的差的绝对值很小,比如小于0.0000001,就可以认为它们相等。
要明白这个提示,首先我们需要弄清楚这两种浮点类型的变量,在计算机当中是如何存储的?
数据的表示方法
在计算机中参与运算的数通常既包含整数部分也包含小数部分,通常将数据按照一定的比例因子缩小成定点小数(纯小数)或扩大成定点整数(纯整数),从而在计算机中进行表示和运算,运算完毕后再根据比例因子还原成实际数值。
所谓的浮点和定点就是【是否约定小数点的位置是固定不变的】。
float
类型在机器中存储为4个字节,double
类型存储为8个字节。虽然字节数不同,但其表示都可以分成三个部分:
- 符号位S
- 指数E(阶码)
- 尾数M
如图所示为IEEE754浮点数标准,float
类型32比特,1位是符号位,8位是指数位,23位是尾数位。double
类型64比特,具有1位符号位,11位指数位和52位尾数位。
符号位:用0表示正数,用1表示负数。
指数部分:用来存储科学计数法中的指数部分,采用移码方式来表示正负指数。将浮点数的指数真值e
变成阶码E
时,应将指数 e
加上一个固定的偏移值127(01111111)
尾数部分:用小数表示,小数点放在尾数域的最前面。
机器表示与真值的关系如下图:
误差的产生
现在以一个float
类型的变量x=1.9f
为例,来说明误差是如何产生的。
计算机在存储1.9这个值的时候,首先要把它转换成二进制表示,整数和小数部分分别转换。整数部分就是1,小数部分要进行基数乘法操作。
0.9在进行基数乘法操作的时候是无穷尽的,但是浮点数机器表示的尾数部分只能存放23位,这时就产生了截断误差,必须舍去剩下取不尽的部分。
实际的二进制表示 0.9=0.111001100…(1100循环)
机器中的二进制表示 0.1110011001100110011001
1.9在机器中被转换为二进制1.1110011001100110011001,然后再按照IEEE754标准进行存储,这里就不再赘述。
这个二进制数再转换成十进制误差就产生了。
0.1110011001100110011001 = 0.89999998
#include<iostream>
#include <iomanip>
using namespace std;
int main() {
float x = 1.9f;
//使用setprecision函数控制显示浮点数值的有效数的数量
cout << setprecision(20) << x << endl;
cout << "x == 1.9?\t" << (x == 1.9) << endl;
return 0;
}
如果使用等号判断浮点数是否相等,就可能出现以下情况:
直接用==进行判断大小会产生错误。
因此如果两个小数的差的绝对值很小,我们就可以认为他们相等,在程序当中也要使用绝对值法进行判断,不能直接用等号。