浮点型变量的误差问题

剑指Offer书中写到这样一条面试小提示:
由于计算机表示小数(包括float和double型小数)都有误差,我们不能直接用等号(==)判断两个小数是否相等。如果两个小数的差的绝对值很小,比如小于0.0000001,就可以认为它们相等。

要明白这个提示,首先我们需要弄清楚这两种浮点类型的变量,在计算机当中是如何存储的?

数据的表示方法

在计算机中参与运算的数通常既包含整数部分也包含小数部分,通常将数据按照一定的比例因子缩小成定点小数(纯小数)或扩大成定点整数(纯整数),从而在计算机中进行表示和运算,运算完毕后再根据比例因子还原成实际数值。

所谓的浮点和定点就是【是否约定小数点的位置是固定不变的】。

float类型在机器中存储为4个字节,double类型存储为8个字节。虽然字节数不同,但其表示都可以分成三个部分:

  1. 符号位S
  2. 指数E(阶码)
  3. 尾数M

如图所示为IEEE754浮点数标准,float类型32比特,1位是符号位,8位是指数位,23位是尾数位。double类型64比特,具有1位符号位,11位指数位和52位尾数位。

符号位:用0表示正数,用1表示负数。

指数部分:用来存储科学计数法中的指数部分,采用移码方式来表示正负指数。将浮点数的指数真值e 变成阶码 时,应将指数 e 加上一个固定的偏移值127(01111111)

尾数部分:用小数表示,小数点放在尾数域的最前面。

机器表示与真值的关系如下图:
在这里插入图片描述

误差的产生

现在以一个float类型的变量x=1.9f为例,来说明误差是如何产生的。

计算机在存储1.9这个值的时候,首先要把它转换成二进制表示,整数和小数部分分别转换。整数部分就是1,小数部分要进行基数乘法操作。

0.9在进行基数乘法操作的时候是无穷尽的,但是浮点数机器表示的尾数部分只能存放23位,这时就产生了截断误差,必须舍去剩下取不尽的部分。

实际的二进制表示 0.9=0.111001100…(1100循环)
机器中的二进制表示 0.1110011001100110011001
在这里插入图片描述
1.9在机器中被转换为二进制1.1110011001100110011001,然后再按照IEEE754标准进行存储,这里就不再赘述。

这个二进制数再转换成十进制误差就产生了。
0.1110011001100110011001 = 0.89999998

在这里插入图片描述

#include<iostream>
#include <iomanip>
using namespace std;

int main() {
	float x = 1.9f;
	//使用setprecision函数控制显示浮点数值的有效数的数量
	cout << setprecision(20) << x << endl;
	cout << "x == 1.9?\t" << (x == 1.9) << endl;
	return 0;
}

如果使用等号判断浮点数是否相等,就可能出现以下情况:

在这里插入图片描述
直接用==进行判断大小会产生错误。

因此如果两个小数的差的绝对值很小,我们就可以认为他们相等,在程序当中也要使用绝对值法进行判断,不能直接用等号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值