图像轮廓

这篇博客介绍了图像处理中的高斯金字塔与拉普拉斯金字塔,展示了如何通过`cv2.pyrUp`和`cv2.pyrDown`进行图像的上下采样。接着,文章详细讲解了如何利用`cv2.findContours`进行轮廓检测,包括不同的轮廓检索模式和轮廓逼近方法。还探讨了轮廓特征,如表面积和周长的计算,并演示了轮廓近似和边界框的绘制。最后,对二值图像进行轮廓检测并展示了结果。
摘要由CSDN通过智能技术生成

cv2.findContours(image, mode, method)

mode:轮廓检索模式

  1. CV_RETR_EXTERNAL:只检索最外面的轮廓
  2. CV_RETR_LIST:检索所有轮廓,并保存到链表中
  3. CV_RETR_CCOMP:检索所有轮廓,并将其分为两层,顶层是各部分的外部边界,第二层是空洞的边界
  4. CV_RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次 (最常用)

method:轮廓逼近方法

  1. CV_CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓
  2. CV_CHAIN_APPROX_SIMPLE:压缩水平的和垂直的斜的部分,也就是只保留斜的部分
    3.CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS
import cv2  # opencv 的读取格式是BGR
import matplotlib.pyplot as plt
import numpy as np

def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
# 高斯金字塔  向下采样(变小)向上采样(变大)
img = cv2.imread('test.jpg')
cv_show('test',img)
print(img.shape)

up=cv2.pyrUp(img)
cv_show('test',up)
print(up.shape)

down=cv2.pyrDown(img)
cv_show('test',down)
print(down.shape)

# 拉普拉斯金字塔 L=G-PyrUp(PyrDown(G))
img1=cv2.imread('test.jpg')
down_up=cv2.pyrUp(cv2.pyrDown(img1))
res=img1-down_up
cv_show('res',np.hstack((img,res)))

# 图像轮廓 为了更高的准确率,使用二值图
img2=cv2.imread('lunkuo.png')
gray=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
ret,thresh=cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
cv_show('thresh',thresh)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)#新版本只有两个返回值

# 绘制轮廓
draw_img = img2.copy()# 保证原图不变
# 传入绘制图像,轮廓,轮廓索引,颜色模式,线条粗细
result = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show('result', result)

# 轮廓特征
cnt=contours[5]
# 计算表面积
print(cv2.contourArea(cnt))
# 周长
print(cv2.arcLength(cnt,True))

# 轮廓近似 设置一个临界值epsilon
epsilon=0.15*cv2.arcLength(cnt,True)
approx=cv2.approxPolyDP(cnt,epsilon,True)
draw_img2=img2.copy()
res=cv2.drawContours(draw_img2,approx,1,(0,0,255),2)
cv_show('res',res)

# 边界矩形
x,y,w,h = cv2.boundingRect(cnt)
img2=cv2.rectangle(img2,(x,y),(x+w,y+h),(0,255,0),2)
cv_show('img',img2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值