cv2.findContours(image, mode, method)
mode:轮廓检索模式
- CV_RETR_EXTERNAL:只检索最外面的轮廓
- CV_RETR_LIST:检索所有轮廓,并保存到链表中
- CV_RETR_CCOMP:检索所有轮廓,并将其分为两层,顶层是各部分的外部边界,第二层是空洞的边界
- CV_RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次 (最常用)
method:轮廓逼近方法
- CV_CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓
- CV_CHAIN_APPROX_SIMPLE:压缩水平的和垂直的斜的部分,也就是只保留斜的部分
3.CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS
import cv2 # opencv 的读取格式是BGR
import matplotlib.pyplot as plt
import numpy as np
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 高斯金字塔 向下采样(变小)向上采样(变大)
img = cv2.imread('test.jpg')
cv_show('test',img)
print(img.shape)
up=cv2.pyrUp(img)
cv_show('test',up)
print(up.shape)
down=cv2.pyrDown(img)
cv_show('test',down)
print(down.shape)
# 拉普拉斯金字塔 L=G-PyrUp(PyrDown(G))
img1=cv2.imread('test.jpg')
down_up=cv2.pyrUp(cv2.pyrDown(img1))
res=img1-down_up
cv_show('res',np.hstack((img,res)))
# 图像轮廓 为了更高的准确率,使用二值图
img2=cv2.imread('lunkuo.png')
gray=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
ret,thresh=cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
cv_show('thresh',thresh)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)#新版本只有两个返回值
# 绘制轮廓
draw_img = img2.copy()# 保证原图不变
# 传入绘制图像,轮廓,轮廓索引,颜色模式,线条粗细
result = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show('result', result)
# 轮廓特征
cnt=contours[5]
# 计算表面积
print(cv2.contourArea(cnt))
# 周长
print(cv2.arcLength(cnt,True))
# 轮廓近似 设置一个临界值epsilon
epsilon=0.15*cv2.arcLength(cnt,True)
approx=cv2.approxPolyDP(cnt,epsilon,True)
draw_img2=img2.copy()
res=cv2.drawContours(draw_img2,approx,1,(0,0,255),2)
cv_show('res',res)
# 边界矩形
x,y,w,h = cv2.boundingRect(cnt)
img2=cv2.rectangle(img2,(x,y),(x+w,y+h),(0,255,0),2)
cv_show('img',img2)