题目描述:
标签:极小化极大 数学 动态规划
亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。
游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。
亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。
假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。
代码:
《方法一、动态规划》
思路分析:
思路分析:动态规划五部曲
1、确定dp数组以及下标含义,dp[i][j]表示当剩下的石子堆为下标 i到下标 j 时,当前玩家与另一个玩家的石子数量之差的最大值
2、确定递推公式,如果取前端石子,dp[i][j] = piles[i]-dp[i+1][j] ; 取后端石子,dp[i][j]=piles[j]-dp[i][j-1]
3、dp数组初始化,i>j,无意义,dp[i][j]=0;i=j,只有一堆石子,所以dp[i][i]=piles[i];
4、确定遍历顺序,从下到上,从左到右
5、举例推导dp数组
class Solution {
public boolean stoneGame(int[] piles) {
int n = piles.length;
int[][] dp = new int[n][n];
for(int i = 0;i < n;i++){
dp[i][i] = piles[i];
}
for(int i = n - 2;i >= 0;i--){
for(int j = i+1;j < n;j++){
dp[i][j] = Math.max(piles[i]-dp[i+1][j],piles[j]-dp[i][j-1]);
}
}
return dp[0][n-1] > 0;
}
}
《方法二、博弈论》
思路分析:总是true,即先手一定能赢
首先石子堆数为偶数,即n%2==0,即n为偶数
若先手取前端,则剩下2~n,后手只能选2或者n,为偶数堆
若先手取后端,则剩下1~n-1,后手只能选1或者n-1,为奇数堆
所以每一递归前,先判断偶数堆大还是奇数堆大,从而做出选择,所以先手占据一定优势,一定能赢
class Solution {
public boolean stoneGame(int[] piles) {
return true;
}
}