LeetCode877—石子游戏(java版)

题目描述:

标签:极小化极大  数学  动态规划

亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。

游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。

亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。

假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。

 代码: 

《方法一、动态规划》

思路分析:

思路分析:动态规划五部曲

1、确定dp数组以及下标含义,dp[i][j]表示当剩下的石子堆为下标 i到下标 j 时,当前玩家与另一个玩家的石子数量之差的最大值

2、确定递推公式,如果取前端石子,dp[i][j] = piles[i]-dp[i+1][j] ; 取后端石子,dp[i][j]=piles[j]-dp[i][j-1]

3、dp数组初始化,i>j,无意义,dp[i][j]=0;i=j,只有一堆石子,所以dp[i][i]=piles[i];

4、确定遍历顺序,从下到上,从左到右

5、举例推导dp数组

class Solution {
    public boolean stoneGame(int[] piles) {
        int n = piles.length;
        int[][] dp = new int[n][n];
        for(int i = 0;i < n;i++){
            dp[i][i] = piles[i];
        }
        for(int i = n - 2;i >= 0;i--){
            for(int j = i+1;j < n;j++){
                dp[i][j] = Math.max(piles[i]-dp[i+1][j],piles[j]-dp[i][j-1]);
            }
        }
        return dp[0][n-1] > 0;
    }
}

 《方法二、博弈论》

思路分析:总是true,即先手一定能赢

首先石子堆数为偶数,即n%2==0,即n为偶数

若先手取前端,则剩下2~n,后手只能选2或者n,为偶数堆

若先手取后端,则剩下1~n-1,后手只能选1或者n-1,为奇数堆

所以每一递归前,先判断偶数堆大还是奇数堆大,从而做出选择,所以先手占据一定优势,一定能赢

class Solution {
    public boolean stoneGame(int[] piles) {
        return true;
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值