Scree Plot 概念
Scree Plot 是一种统计图表,用于展示特征值(或称为主成分的方差)与主成分数量之间的关系。在主成分分析(PCA)中,Scree Plot 帮助我们决定保留多少个主成分。
Scree Plot 原理
在PCA中,特征值表示数据在每个主成分方向上的方差大小。Scree Plot 通过展示这些特征值,帮助我们识别出方差解释的“断点”,即特征值急剧下降的点,这个点通常被视为选择主成分数量的依据。
步骤
- 数据标准化:确保数据具有零均值和单位方差。
- 计算协方差矩阵:这有助于识别数据中的相关性。
- 计算特征值和特征向量:对协方差矩阵进行奇异值分解。
- 绘制Scree Plot:将特征值绘制在图表上,通常以特征值大小为纵轴,主成分为横轴。
分类
Scree Plot 本身并没有分类,但它是主成分分析(PCA)的一部分,PCA 是一种降维技术。
用途
- 确定主成分数量:帮助决定保留多少个主成分来解释数据的最大方差。
- 评估PCA的有效性:通过观察特征值的下降趋势来评估PCA的效果。
Python代码详细实现
以下是一个使用Python实现Scree Plot的例子,并附有注释。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
# 加载数据集
data = load_iris()
X = data.data
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 初始化PCA对象
pca = PCA()
# 拟合数据
pca.fit(X_scaled)
# 提取特征值
eigenvalues = pca.explained_variance_
# 绘制Scree Plot
plt.figure(figsize=(8, 5))
plt.plot(range(1, len(eigenvalues) + 1), eigenvalues, marker='o', linestyle='--')
plt.title('Scree Plot')
plt.xlabel('Principal Component')
plt.ylabel('Eigenvalue')
plt.grid(True)
plt.show()
在这段代码中,我们首先加载了鸢尾花数据集,并对数据进行了标准化处理。然后,我们使用PCA对象拟合了标准化后的数据,并提取了特征值。最后,我们使用matplotlib库绘制了Scree Plot,其中横轴表示主成分的数量,纵轴表示相应的特征值。