- 3.1引言
- 内容概述
- 这部分主要介绍了在电路分析中需要系统的分析方法的原因。随着电路复杂度的增加,如电路元件数量增多、连接方式复杂等,单纯依靠基本定律(如欧姆定律和基尔霍夫定律)来求解电路变量(如电压、电流)会变得困难且容易出错。因此,引入系统的电路分析方法是必要的,这些方法能够帮助我们更高效、准确地分析电路。
- 目的
- 让读者意识到学习电路分析方法的重要性,为后续学习节点分析法、网孔分析法等具体方法做铺垫。
- 内容概述
- 3.2节点分析法
- 内容概述
- 定义:节点分析法是以节点电压为未知量,根据基尔霍夫电流定律(KCL)列方程求解电路的方法。在一个具有 n n n个节点的电路中,通常选择一个节点作为参考节点(其电位设为 0 V 0V 0V),其余 n − 1 n - 1 n−1个节点相对于参考节点的电压就是节点电压。
- 步骤:首先确定参考节点,然后对其余节点列写KCL方程。对于每个非参考节点,流入该节点的电流之和等于流出该节点的电流之和。电流可以通过欧姆定律用节点电压来表示,即 I = V R I=\frac{V}{R} I=RV( V V V是节点电压差, R R R是连接支路的电阻)。
- 示例
- 假设有一个简单电路,包含三个电阻 R 1 R_1 R1、 R 2 R_2 R2、 R 3 R_3 R3和两个电流源 I 1 I_1 I1、 I 2 I_2 I2。设节点 0 0 0为参考节点,节点 1 1 1和节点 2 2 2的电压分别为 V 1 V_1 V1和 V 2 V_2 V2。根据KCL对节点 1 1 1列方程: I 1 = V 1 R 1 + V 1 − V 2 R 2 I_1=\frac{V_1}{R_1}+\frac{V_1 - V_2}{R_2} I1=R1V1+R2V1−V2;对节点 2 2 2列方程: I 2 + V 1 − V 2 R 2 = V 2 R 3 I_2+\frac{V_1 - V_2}{R_2}=\frac{V_2}{R_3} I2+R2V1−V2=R3V2。通过求解这两个方程,就可以得到节点电压 V 1 V_1 V1和 V 2 V_2 V2,进而求出各支路电流。
- 内容概述
- 3.3含电压源的节点分析法
- 内容概述
- 处理方式:当电路中存在电压源时,会使节点分析法的方程列写变得复杂一些。如果电压源的一端连接到参考节点,那么另一端节点的电压就已知,等于该电压源的电压,这样就减少了一个未知节点电压。如果电压源两端都不连接参考节点,就需要引入超节点的概念。超节点是包含电压源和连接到它的两个节点的封闭面,对超节点列写KCL方程,同时结合电压源两端电压差的关系来求解。
- 示例
- 例如,电路中有一个电压源 V s V_s Vs连接在节点 1 1 1和节点 2 2 2之间,且节点 0 0 0为参考节点。可以把节点 1 1 1和节点 2 2 2以及电压源 V s V_s Vs看成一个超节点。对超节点列KCL方程: I i n 1 + I i n 2 = I o u t 1 + I o u t 2 I_{in1}+I_{in2}=I_{out1}+I_{out2} Iin1+Iin2=Iout1+Iout2(其中 I i n I_{in} Iin是流入超节点的电流, I o u t I_{out} Iout是流出超节点的电流),同时还有 V 1 − V 2 = V s V_1 - V_2 = V_s V1−V2=Vs,通过联立这两个方程来求解节点电压 V 1 V_1 V1和 V 2 V_2 V2。
- 内容概述
- 3.4网孔分析法
- 内容概述
- 定义:网孔分析法是以网孔电流为未知量,根据基尔霍夫电压定律(KVL)列方程求解电路的方法。网孔是电路中不包含其他支路的独立回路。
- 步骤:首先确定电路中的网孔,然后对每个网孔列写KVL方程。在列方程时,沿着网孔的绕行方向,各元件电压降的代数和为 0 0 0。电压降可以通过欧姆定律和网孔电流来表示,例如,电阻 R R R上的电压降为 R × I m R\times I_m R×Im( I m I_m Im是网孔电流)。
- 示例
- 对于一个含有三个电阻 R 1 R_1 R1、 R 2 R_2 R2、 R 3 R_3 R3和两个电压源 V 1 V_1 V1、 V 2 V_2 V2的电路,有两个网孔。设网孔电流分别为 I m 1 I_m1 Im1和 I m 2 I_m2 Im2。对网孔 1 1 1列KVL方程: V 1 − R 1 I m 1 − R 2 ( I m 1 − I m 2 ) = 0 V_1 - R_1I_m1 - R_2(I_m1 - I_m2)=0 V1−R1Im1−R2(Im1−Im2)=0;对网孔 2 2 2列KVL方程: R 2 ( I m 1 − I m 2 ) − R 3 I m 2 − V 2 = 0 R_2(I_m1 - I_m2)-R_3I_m2 - V_2 = 0 R2(Im1−Im2)−R3Im2−V2=0。通过求解这两个方程,可以得到网孔电流 I m 1 I_m1 Im1和 I m 2 I_m2 Im2,进而求出各支路电流和电压。
- 内容概述
- 3.5含电流源的网孔分析法
- 内容概述
- 处理方式:当电路中存在电流源时,对于网孔分析法也需要特殊处理。如果电流源位于一个网孔的边界上,那么这个网孔的电流就已知,等于该电流源的电流,这样就减少了一个未知网孔电流。如果电流源位于两个网孔的公共支路,就需要引入辅助方程,利用电流源的电流等于两个网孔电流之差(或之和,取决于电流方向)这个关系来求解。
- 示例
- 例如,电路中有一个电流源 I s I_s Is位于网孔 1 1 1和网孔 2 2 2的公共支路。设网孔 1 1 1的网孔电流为 I m 1 I_m1 Im1,网孔 2 2 2的网孔电流为 I m 2 I_m2 Im2,则有辅助方程 I s = I m 1 − I m 2 I_s = I_m1 - I_m2 Is=Im1−Im2(假设电流源电流方向是从网孔 1 1 1流向网孔 2 2 2),再结合网孔 1 1 1和网孔 2 2 2的KVL方程来求解网孔电流。
- 内容概述
- 3.6直观的节点和网孔分析法
- 内容概述
- 这部分主要强调通过对电路结构的观察和分析,能够更简便地运用节点分析法和网孔分析法。对于一些具有特殊结构的电路,如对称电路、具有串联或并联支路的电路等,可以利用电路的对称性或元件的串并联关系来简化方程的列写和求解过程。
- 示例
- 在一个对称的双电源、双电阻电路中,利用对称性可以直接得出某些节点电压相等或某些网孔电流相等的结论,从而减少未知量的数量,简化计算。
- 内容概述
- 3.7节点分析与网孔分析的比较
- 内容概述
- 比较内容:对节点分析法和网孔分析法进行了比较。从适用电路类型来看,节点分析法对于节点数较少、独立回路数较多的电路比较适用;而网孔分析法对于独立回路数较少、节点数较多的电路更具优势。从方程列写的难易程度来看,节点分析法主要依据KCL,网孔分析法主要依据KVL,在不同的电路结构下,一种方法可能比另一种方法更容易列写方程。
- 选择建议:在实际电路分析中,需要根据电路的具体结构和已知条件来选择更合适的分析方法,以达到简化计算的目的。
- 内容概述
- 3.8用PSpice进行电路分析
- 内容概述
- PSpice简介:PSpice是一款用于电路模拟和分析的软件工具。介绍了如何使用PSpice来构建电路模型,包括如何添加电路元件、设置元件参数、连接元件等。
- 分析功能:可以利用PSpice进行直流分析、交流分析、瞬态分析等多种类型的电路分析。例如,在直流分析中,可以直接得到电路中各节点电压和支路电流等参数,帮助验证通过节点分析法或网孔分析法计算得到的结果。
- 内容概述
- 3.9应用:直流晶体管电路
- 内容概述
- 晶体管电路分析:将前面介绍的电路分析方法应用到直流晶体管电路中。在晶体管电路中,通过分析晶体管的工作状态(如放大区、截止区、饱和区),利用节点分析法或网孔分析法来求解电路中的电流和电压,从而了解晶体管电路的性能。
- 示例
- 对于一个简单的共发射极晶体管放大电路,通过对基极 - 发射极回路和集电极 - 发射极回路分别应用KVL,结合晶体管的电流放大倍数等参数,分析电路的静态工作点(如基极电流、集电极电流、集电极 - 发射极电压等)。
- 内容概述
- 3.10小结
- 内容概述
- 总结了本章介绍的各种电路分析方法,包括节点分析法、网孔分析法及其在含电压源、电流源电路中的应用,强调了根据电路特点选择合适分析方法的重要性。同时也提到了PSpice软件在电路分析中的辅助作用以及这些分析方法在直流晶体管电路等实际应用中的价值。这些分析方法为后续学习更复杂的电路(如交流电路、动态电路等)奠定了基础。