以下是对单相变压器空载运行的详细分析:
电磁过程
当单相变压器一次绕组接入交流电源,二次绕组开路时,一次绕组中会流过空载电流 i 0 i_{0} i0. 该电流在一次绕组中产生交变磁势 f 0 = i 0 n 1 f_{0}=i_{0}n_{1} f0=i0n1,并建立空载时的磁场. 此磁场的磁通可分为两部分:
- 主磁通:绝大部分磁通被约束在铁芯中,沿铁芯磁路闭合,并与原、副绕组的全部匝数相交链,这部分磁通是联系原、副绕组的媒介,起传递能量的作用,称为主磁通,用 φ m \varphi_{m} φm表示.
- 漏磁通:另有一小部分磁通沿空气或油等非铁磁材料在原边自行闭合,仅与原绕组的全部或部分匝数交链,而不穿过副绕组,称为原绕组的漏磁通,用 φ 1 δ \varphi_{1\delta} φ1δ表示.
感应电动势
- 主磁通感应电动势:根据电磁感应定律,主磁通在原、副绕组内的感应电势分别为 e 1 = − n 1 d φ d t e_{1}=-n_{1}\frac{d\varphi}{dt} e1=−n1dtdφ, e 2 = − n 2 d φ d t e_{2}=-n_{2}\frac{d\varphi}{dt} e2=−n2dtdφ 。假定主磁通按正弦变化,即 φ = φ m sin ω t \varphi=\varphi_{m}\sin\omega t φ=φmsinωt,则感应电势为 e 1 = − n 1 ω φ m cos ω t = 2 E 1 sin ( ω t − 9 0 ∘ ) e_{1}=-n_{1}\omega\varphi_{m}\cos\omega t=\sqrt{2}E_{1}\sin(\omega t - 90^{\circ}) e1=−n1ωφmcosωt=2E1sin(ωt−90∘), e 2 = − n 2 ω φ m cos ω t = 2 E 2 sin ( ω t − 9 0 ∘ ) e_{2}=-n_{2}\omega\varphi_{m}\cos\omega t=\sqrt{2}E_{2}\sin(\omega t - 90^{\circ}) e2=−n2ωφmcosωt=2E2sin(ωt−90∘) ,其中 E 1 E_{1} E1和 E 2 E_{2} E2分别为原、副绕组感应电势的有效值,且 E 1 = n 1 n 2 E 2 E_{1}=\frac{n_{1}}{n_{2}}E_{2} E1=n2n1E2,变比 k = E 1 E 2 = n 1 n 2 k = \frac{E_{1}}{E_{2}}=\frac{n_{1}}{n_{2}} k=E2E1=n2n1.
- 漏磁通感应电动势:漏磁通在一次绕组中也会产生感应电动势,其在时间相位上滞后于漏磁通 9 0 ∘ 90^{\circ} 90∘,通常用 e 1 σ e_{1\sigma} e1σ表示,其有效值为 E 1 σ = I 0 X 1 E_{1\sigma}=I_{0}X_{1} E1σ=I0X1,其中 X 1 X_{1} X1为一次绕组的漏电抗.
空载电流
空载电流 i 0 i_{0} i0主要有两个作用及分量 :
- 磁化电流 i μ i_{\mu} iμ:单纯起励磁作用,为空载电流的无功分量,它与主磁通 φ m \varphi_{m} φm同相,比外加电压 u 1 u_{1} u1滞后 9 0 ∘ 90^{\circ} 90∘。
- 铁耗电流 i F e i_{Fe} iFe:因磁滞和涡流损耗而引起,为空载电流的有功分量,它与 u 1 u_{1} u1同相。 i F e i_{Fe} iFe与 u 1 u_{1} u1的乘积就是空载时原绕组从电网吸取的有功功率,供给铁芯损耗。通常 i μ i_{\mu} iμ远大于 i F e i_{Fe} iFe,在工程上可近似地用 i μ = i 0 i_{\mu}=i_{0} iμ=i0来分析空载电流的性质 。
空载损耗
变压器空载时没有输出功率,从电源吸取的功率 p 0 p_{0} p0全部消耗于内部,称为空载损耗. 空载损耗主要包括以下部分 :
- 铁芯损耗 p F e p_{Fe} pFe:是铁芯在交变磁化下产生的磁滞损耗和涡流损耗。磁滞损耗取决于电源的频率和铁芯材料的磁滞回线的面积;涡流损耗与铁芯磁密幅值和频率的平方成正比,还与钢片厚度的平方成正比。一般情况下,空载损耗的绝大部分是铁芯损耗,约占空载损耗的 98 % 98\% 98%左右。
- 铜损耗 p C u p_{Cu} pCu:由空载电流通过一次绕组电阻产生,由于空载电流及一次绕组电阻都很小,铜损耗约占空载损耗 p 0 p_{0} p0的 2 % 2\% 2%左右,因此在近似计算中常认为空载损耗 p 0 p_{0} p0等于铁芯损耗 p F e p_{Fe} pFe,即 p 0 ≈ p F e = u 1 i 0 cos φ 0 p_{0}\approx p_{Fe}=u_{1}i_{0}\cos\varphi_{0} p0≈pFe=u1i0cosφ0,式中 φ 0 \varphi_{0} φ0为 u 1 u_{1} u1与 i 0 i_{0} i0之间的夹角 。
电动势平衡方程
根据基尔霍夫电压定律,可得到单相变压器空载运行时的电动势平衡方程为: U ˙ 1 = − E ˙ 1 + I ˙ 0 Z 1 \dot{U}_{1}=-\dot{E}_{1}+\dot{I}_{0}Z_{1} U˙1=−E˙1+I˙0Z1,其中 U ˙ 1 \dot{U}_{1} U˙1是一次绕组的电压相量, E ˙ 1 \dot{E}_{1} E˙1是一次绕组的感应电动势相量, I ˙ 0 \dot{I}_{0} I˙0是空载电流相量, Z 1 = R 1 + j X 1 Z_{1}=R_{1}+jX_{1} Z1=R1+jX1是一次绕组的漏阻抗. 由于一次绕组的电阻压降 I ˙ 0 R 1 \dot{I}_{0}R_{1} I˙0R1和漏电动势 E ˙ 1 σ = I ˙ 0 X 1 \dot{E}_{1\sigma}=\dot{I}_{0}X_{1} E˙1σ=I˙0X1都很小,故可近似认为 U ˙ 1 ≈ − E ˙ 1 \dot{U}_{1}\approx-\dot{E}_{1} U˙1≈−E˙1,即一次主电势的大小由外施电压决定.
等效电路
变压器空载运行时的等效电路由两个阻抗串联组成,一个是一次绕组的漏阻抗 Z 1 = R 1 + j X 1 Z_{1}=R_{1}+jX_{1} Z1=R1+jX1,另一个是励磁阻抗 Z m = R m + j X m Z_{m}=R_{m}+jX_{m} Zm=Rm+jXm. 其中, R 1 R_{1} R1是一次绕组的电阻, X 1 X_{1} X1是一次绕组的漏电抗,反映漏磁通的作用; R m R_{m} Rm是励磁电阻,代表铁芯损耗的等效电阻, X m X_{m} Xm是励磁电抗,反映主磁通对电路的影响. 由于主磁路为非线性磁路, Z m Z_{m} Zm不是常数,其大小随磁路的饱和程度而变化,磁路越饱和, R m R_{m} Rm越大, X m X_{m} Xm越小.
相量图
根据上述的电动势平衡方程和各电磁量之间的相位关系,可以画出单相变压器空载运行时的相量图. 作图步骤一般如下 :
- 以 φ ˙ m \dot{\varphi}_{m} φ˙m为参考相量,画在水平线上, I ˙ μ \dot{I}_{\mu} I˙μ与 φ ˙ m \dot{\varphi}_{m} φ˙m同相。
- 由电动势平衡方程可知 E ˙ 1 \dot{E}_{1} E˙1、 E ˙ 2 \dot{E}_{2} E˙2超前于 φ ˙ m \dot{\varphi}_{m} φ˙m 9 0 ∘ 90^{\circ} 90∘。
- 将 E ˙ 1 \dot{E}_{1} E˙1反向得到 − E ˙ 1 -\dot{E}_{1} −E˙1,由 U ˙ 1 = − E ˙ 1 + I ˙ 0 Z 1 \dot{U}_{1}=-\dot{E}_{1}+\dot{I}_{0}Z_{1} U˙1=−E˙1+I˙0Z1作空载电流 I ˙ 0 \dot{I}_{0} I˙0, I ˙ 0 \dot{I}_{0} I˙0超前 − E ˙ 1 -\dot{E}_{1} −E˙1一个铁耗角 α F e \alpha_{Fe} αFe。