使用可逆神经网络实现隐写嵌入和提取
参考链接:Lu S P, Wang R, Zhong T, et al. Large-Capacity Image Steganography Based on Invertible Neural Networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 10816-10825.
论文中文版
1. 主要贡献
- 使用可逆隐写网络(ISN)实现隐写和恢复
- 负载率提升到 24~120 bpp
- 数量和质量都是目前的SOTA
2. 相关工作
-
传统图像隐写:主要有三种,负载率低
基于空域:LSB,PVD,直方图平移 histogram shifting, multiple bit-planes , palettes(调色板)
基于变换域:JSteg
自适应隐写:STC编码 -
基于深度学习的隐写:主要有四种
合成:GAN生成载体图像
生成修改概率图:生成满足最小失真嵌入的代价函数
对抗嵌入:最小失真下的对抗主题
3-player 游戏:HiDDeN and SteganoGAN,使用编码-解码网络
Deep Steganography使用全卷积网络,包括三个部分:准备,隐藏,恢复网络。
本文在隐藏和恢复过程中使用INN。
应用
LFM,StegaStamp,
Invertible Neural Networks (INN)
在相同网络中,前向和后向传播共享参数
3. 方法
3.1 概述
x
h
o
x_{ho}
xho:载体图像
x
h
i
x_{hi}
xhi:要隐藏的图像
y
c
o
y_{co}
yco:隐写后图像
x
^
h
o
\hat{x}_{ho}
x^ho :隐写后恢复的载体图像
第一个公式使用前向传播,第二个使用后向传播
3.2 可逆隐写网络 (ISN)
长度为
l
l
l 的可逆块,输入
b
l
b^{l}
bl沿着通道轴划分为
b
1
l
b_{1}^{l}
b1l和
b
2
l
b_{2}^{l}
b2l
对于前向传播:
b
1
l
+
1
b_{1}^{l+1}
b1l+1和
b
2
l
+
1
b_{2}^{l+1}
b2l+1 由上图公式得到,其中
ϕ
(
⋅
)
\phi(·)
ϕ(⋅) 和
η
(
⋅
)
η(·)
η(⋅) 为任意操作,
对于后向传播:给定
b
1
l
+
1
b_{1}^{l+1}
b1l+1和
b
2
l
+
1
b_{2}^{l+1}
b2l+1,可计算出
b
1
l
b_{1}^{l}
b1l和
b
2
l
b_{2}^{l}
b2l,
论文结构: