【论文阅读】stegoGAN 引用文献整理

使用可逆神经网络实现隐写嵌入和提取

参考链接:Lu S P, Wang R, Zhong T, et al. Large-Capacity Image Steganography Based on Invertible Neural Networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 10816-10825.
论文中文版

1. 主要贡献

  • 使用可逆隐写网络(ISN)实现隐写和恢复
  • 负载率提升到 24~120 bpp
  • 数量和质量都是目前的SOTA

2. 相关工作

  • 传统图像隐写:主要有三种,负载率低
    基于空域:LSB,PVD,直方图平移 histogram shifting, multiple bit-planes , palettes(调色板)
    基于变换域:JSteg
    自适应隐写:STC编码

  • 基于深度学习的隐写:主要有四种
    合成:GAN生成载体图像
    生成修改概率图:生成满足最小失真嵌入的代价函数
    对抗嵌入:最小失真下的对抗主题
    3-player 游戏:HiDDeN and SteganoGAN,使用编码-解码网络

Deep Steganography使用全卷积网络,包括三个部分:准备,隐藏,恢复网络。
本文在隐藏和恢复过程中使用INN。

应用
LFM,StegaStamp,

Invertible Neural Networks (INN)
在相同网络中,前向和后向传播共享参数

3. 方法

3.1 概述

在这里插入图片描述
x h o x_{ho} xho:载体图像
x h i x_{hi} xhi:要隐藏的图像
y c o y_{co} yco:隐写后图像
x ^ h o \hat{x}_{ho} x^ho :隐写后恢复的载体图像

第一个公式使用前向传播,第二个使用后向传播

3.2 可逆隐写网络 (ISN)

长度为 l l l 的可逆块,输入 b l b^{l} bl沿着通道轴划分为 b 1 l b_{1}^{l} b1l b 2 l b_{2}^{l} b2l
在这里插入图片描述
对于前向传播: b 1 l + 1 b_{1}^{l+1} b1l+1 b 2 l + 1 b_{2}^{l+1} b2l+1 由上图公式得到,其中 ϕ ( ⋅ ) \phi(·) ϕ() η ( ⋅ ) η(·) η() 为任意操作,

在这里插入图片描述
对于后向传播:给定 b 1 l + 1 b_{1}^{l+1} b1l+1 b 2 l + 1 b_{2}^{l+1} b2l+1,可计算出 b 1 l b_{1}^{l} b1l b 2 l b_{2}^{l} b2l

论文结构:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岁月漫长_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值