Scikit-Learn 学习线性回归

对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。


1. 获取数据,定义问题


没有数据,当然没法研究机器学习啦。:) 这里我们用UCI大学公开的机器学习数据来跑线性回归。


数据的介绍在这: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant


数据的下载地址在这: http://archive.ics.uci.edu/ml/machine-learning-databases/00294/


里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。


我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/AP/RH这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即:


PE=θ_0+θ_1*AT+θ_2*V+θ_3*AP+θ_4*RH


而需要学习的,就是θ_0、θ_1、θ_2、θ_3、θ_4这5个参数。


2. 整理数据


下载后的数据可以发现是一个压缩文件,解压后可以看到里面有一个xlsx文件,我们先用excel把它打开,接着“另存为“”csv格式,保存下来,后面我们就用这个csv来运行线性回归。


打开这个csv可以发现数据已经整理好,没有非法数据,因此不需要做预处理。但是这些数据并没有归一化,也就是转化为均值0,方差1的格式。也不用我们搞,后面scikit-learn在线性回归时会先帮我们把归一化搞定。


好了,有了这个csv格式的数据,我们就可以大干一场了。


3. 用pandas来读取数据


我们先打开ipython notebook,新建一个notebook。当然也可以直接在python的交互式命令行里面输入,不过还是推荐用notebook。下面的例子和输出我都是在notebook里面跑的。


先把要导入的库声明了:


import matplotlib.pyplot as plt

%matplotlib inline

 

import numpy as np

import pandas as pd

from sklearn import datasets, linear_model


接着我们就可以用pandas读取数据了:


# read_csv里面的参数是csv在你电脑上的路径,此处csv文件放在notebook运行目录下面的CCPP目录里

data = pd.read_csv('.\CCPP\ccpp.csv')


测试下读取数据是否成功:


#读取前五行数据,如果是最后五行,用data.tail()

data.head()


运行结果应该如下,看到下面的数据,说明pandas读取数据成功:



4. 准备运行算法的数据


我们看看数据的维度:


data.shape


结果是(9568, 5)。说明我们有9568个样本,每个样本有5列。


现在我们开始准备样本特征X,我们用AT, V,AP和RH这4个列作为样本特征。


X = data[['AT', 'V', 'AP', 'RH']]

X.head()


可以看到X的前五条输出如下:



接着我们准备样本输出y, 我们用PE作为样本输出。


y = data[['PE']]

y.head()


可以看到y的前五条输出如下:


5.划分训练集和测试集


我们把X和y的样本组合划分成两部分,一部分是训练集,一部分是测试集,代码如下:


from sklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)


查看下训练集和测试集的维度:


print X_train.shape

print y_train.shape

print X_test.shape

print y_test.shape


结果如下:


(7176, 4)

(7176, 1)

(2392, 4)

(2392, 1)   


可以看到75%的样本数据被作为训练集,25%的样本被作为测试集。


6. 运行scikit-learn的线性模型


终于到了临门一脚了,我们可以用scikit-learn的线性模型来拟合我们的问题了。scikit-learn的线性回归算法使用的是最小二乘法来实现的。代码如下:


from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(X_train, y_train)


拟合完毕后,我们看看我们的需要的模型系数结果:


print linreg.intercept_

print linreg.coef_


输出如下:


[ 447.06297099]

[[-1.97376045 -0.23229086  0.0693515  -0.15806957]]


这样我们就得到了在步骤1里面需要求得的5个值。也就是说PE和其他4个变量的关系如下:

PE=447.06297099-1.97376045*AT-0.23229086*V+0.0693515*AP-0.15806957*RH


7. 模型评价


我们需要评估我们的模型的好坏程度,对于线性回归来说,我们一般用均方差(Mean Squared Error, MSE)或者均方根差(Root Mean Squared Error, RMSE)在测试集上的表现来评价模型的好坏。


我们看看我们的模型的MSE和RMSE,代码如下:


#模型拟合测试集

y_pred = linreg.predict(X_test)

from sklearn import metrics

# 用scikit-learn计算MSE

print "MSE:",metrics.mean_squared_error(y_test, y_pred)

# 用scikit-learn计算RMSE

print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))


输出如下:


MSE20.0804012021

RMSE4.48111606657


得到了MSE或者RMSE,如果我们用其他方法得到了不同的系数,需要选择模型时,就用MSE小的时候对应的参数。


比如这次我们用AT, V,AP这3个列作为样本特征。不要RH, 输出仍然是PE。代码如下:


X = data[['AT', 'V', 'AP']]

y = data[['PE']]

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(X_train, y_train)

#模型拟合测试集

y_pred = linreg.predict(X_test)

from sklearn import metrics

# 用scikit-learn计算MSE

print "MSE:",metrics.mean_squared_error(y_test, y_pred)

# 用scikit-learn计算RMSE

print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))


输出如下:


MSE23.2089074701

RMSE4.81756239919


可以看出,去掉RH后,模型拟合的没有加上RH的好,MSE变大了。


8. 交叉验证


我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的cv参数为10:


X = data[['AT', 'V', 'AP', 'RH']]

y = data[['PE']]

from sklearn.model_selection import cross_val_predict

predicted = cross_val_predict(linreg, X, y, cv=10)

# 用scikit-learn计算MSE

print "MSE:",metrics.mean_squared_error(y, predicted)

# 用scikit-learn计算RMSE

print "RMSE:",np.sqrt(metrics.mean_squared_error(y, predicted))


输出如下:


MSE20.7955974619

RMSE4.56021901469


可以看出,采用交叉验证模型的MSE比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的MSE,而第6节仅仅对25%的测试集做了MSE。两者的先决条件并不同。


9. 画图观察结果


这里画图真实值和预测值的变化关系,离中间的直线y=x直接越近的点代表预测损失越低。代码如下:


fig, ax = plt.subplots()

ax.scatter(y, predicted)

ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)

ax.set_xlabel('Measured')

ax.set_ylabel('Predicted')

plt.show()


输出的图像如下:


以上就是用scikit-learn和pandas学习线性回归的过程,希望可以对初学者有所帮助。 


来源:刘建平Pinard

www.cnblogs.com/pinard/p/6016029.html


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值