LeetCode 221:最大正方形

在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例:

输入: 

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

输出: 4

 

 

class Solution {
    public int maximalSquare(char[][] matrix) {
        /**
    dp[i][j]表示以第i行和第j列为右下角能构成的最大正方形,则递推式为:dp[i][j] = 1 + min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1]);
        */
        int m = matrix.length;
        if(m<1) return 0;
        int n = matrix[0].length;
        int max = 0;
        int[][] dp = new int[m+1][n+1];

        for(int i=1;i<=m;++i){
            for(int j =1;j<=n;j++){
                if(matrix[i-1][j-1] == '1'){
                    dp[i][j] = 1 + Math.min(dp[i-1][j-1],Math.min(dp[i-1][j],dp[i][j-1]));
                    max = Math.max(max,dp[i][j]);
                }
            }
        }
        return max*max;
    }
}
class Solution {
    public int maximalSquare(char[][] matrix) {
        /**
        dp[i][j]表示以matrix[i][j]为右下角所能构成的最大正方形边长, 则递推式为:
        dp[i][j] = 1 + min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]);
        **/
        int m = matrix.length;
        if(m < 1) return 0;
        int n = matrix[0].length;
        int max = 0;
        int[]pre = new int[n+1];
        int[]cur = new int[n+1];
        
        for(int i = 1; i <= m; ++i) {
            for(int j = 1; j <= n; ++j) {
                if(matrix[i-1][j-1] == '1') {
                    cur[j] = 1 + Math.min(pre[j-1], Math.min(pre[j], cur[j-1]));
                    max = Math.max(max, cur[j]);
                }
                pre[j - 1] = cur[j - 1];// 上一行的j-1位置用不到了,此时就可以替换为本行的结果,为下一行的运算做准备。
                cur[j - 1] = 0;// 本行用不到的结果置0,为下一行做准备。
            }
            pre[n] = cur[n];
            cur[n] = 0;
        }
        return max*max;
    }
}

暴力求解法:

    由于正方形的面积等于边长的平方,因此要找到最大正方形的面积,首先需要找到最大正方形的边长,然后计算最大边长的平方即可。

    该方法简单直观,具体思路如下:

*遍历矩阵中的每个元素,每次遇到1,则将该元素作为正方形的左上角

*确定正方形的左上角后,根据左上角所在的行和列计算可能的最大正方形的边长(正方形的范围不能超过矩阵的行数和列数),在该边上范围内寻找只包含1的最大正方形。

*每次在下方新增一行以及在右方新增一列,判断新增的行和列是否满足所有元素都是 11。

class Solution {
    public int maximalSquare(char[][] matrix) {
     int maxSide = 0;
        if(matrix == null || matrix.length == 0 || matrix[0].length == 0){
            return maxSide;
        }
        int row = matrix.length,columns = matrix[0].length;
        for(int i = 0; i < row; i++){
            for(int j = 0; j < columns; j++ ){
                if(matrix[i][j] == '1'){
                    //遇到一个1作为正方形的左上角
                    maxSide = Math.max(maxSide,1);
                    //计算可能的最大正方形边长
                    int currentMaxSide = Math.min(row - i,columns - j);
                    for(int k = 1; k < currentMaxSide; k++){
                        //判断新增的一行一列是否均为1
                        boolean flag = true;
                        if(matrix[i+k][j+k] == '0'){
                            break;
                        }
                        for(int m = 0; m < k; m++){
                            if(matrix[i+k][j+m] == '0' || matrix [i+m][j+k] == '0'){
                                flag = false;
                                break;
                            }
                        }
                        if(flag){
                            maxSide = Math.max(maxSide,k+1);
                        }else{
                            break;
                        }
                    }
                }
            }
        }
        int maxSquare = maxSide * maxSide;
        return maxSquare;
    }
}

复杂度分析

时间复杂度:O(mn \min(m,n)^2)O(mnmin(m,n) 
2
 ),其中 mm 和 nn 是矩阵的行数和列数。

需要遍历整个矩阵寻找每个 11,遍历矩阵的时间复杂度是 O(mn)O(mn)。
对于每个可能的正方形,其边长不超过 mm 和 nn 中的最小值,需要遍历该正方形中的每个元素判断是不是只包含 11,遍历正方形时间复杂度是 O(\min(m,n)^2)O(min(m,n) 
2
 )。
总时间复杂度是 O(mn \min(m,n)^2)O(mnmin(m,n) 
2
 )。
空间复杂度:O(1)O(1)。额外使用的空间复杂度为常数。

方法二:动态规划
方法一虽然直观,但是时间复杂度太高,有没有办法降低时间复杂度呢?

可以使用动态规划降低时间复杂度。我们用 dp(i, j)dp(i,j) 表示以 (i, j)(i,j) 为右下角,且只包含 11 的正方形的边长最大值。如果我们能计算出所有 dp(i, j)dp(i,j) 的值,那么其中的最大值即为矩阵中只包含 11 的正方形的边长最大值,其平方即为最大正方形的面积。

那么如何计算 dpdp 中的每个元素值呢?对于每个位置 (i, j)(i,j),检查在矩阵中该位置的值:

如果该位置的值是 00,则 dp(i, j) = 0dp(i,j)=0,因为当前位置不可能在由 11 组成的正方形中;

如果该位置的值是 11,则 dp(i, j)dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dpdp 值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 11,状态转移方程如下:

dp(i, j)=min(dp(i−1, j), dp(i−1, j−1), dp(i, j−1))+1
dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1

如果读者对这个状态转移方程感到不解,可以参考 1277. 统计全为 1 的正方形子矩阵的官方题解,其中给出了详细的证明。

此外,还需要考虑边界条件。如果 ii 和 jj 中至少有一个为 00,则以位置 (i, j)(i,j) 为右下角的最大正方形的边长只能是 11,因此 dp(i, j) = 1dp(i,j)=1。

以下用一个例子具体说明。原始矩阵如下。

0 1 1 1 0
1 1 1 1 0
0 1 1 1 1
0 1 1 1 1
0 0 1 1 1
对应的 dpdp 值如下。

0 1 1 1 0
1 1 2 2 0
0 1 2 3 1
0 1 2 3 2
0 0 1 2 3
下图也给出了计算 dpdp 值的过程。

class Solution {
    public int maximalSquare(char[][] matrix) {
        int maxSide = 0;
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return maxSide;
        }
        int rows = matrix.length, columns = matrix[0].length;
        int[][] dp = new int[rows][columns];
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < columns; j++) {
                if (matrix[i][j] == '1') {
                    if (i == 0 || j == 0) {
                        dp[i][j] = 1;
                    } else {
                        dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
                    }
                    maxSide = Math.max(maxSide, dp[i][j]);
                }
            }
        }
        int maxSquare = maxSide * maxSide;
        return maxSquare;
    }
}


复杂度分析

时间复杂度:O(mn)O(mn),其中 mm 和 nn 是矩阵的行数和列数。需要遍历原始矩阵中的每个元素计算 dp 的值。

空间复杂度:O(mn)O(mn),其中 mm 和 nn 是矩阵的行数和列数。创建了一个和原始矩阵大小相同的矩阵 dp。由于状态转移方程中的 dp(i, j)dp(i,j) 由其上方、左方和左上方的三个相邻位置的 dpdp 值决定,因此可以使用两个一维数组进行状态转移,空间复杂度优化至 O(n)O(n)。

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/maximal-square/solution/zui-da-zheng-fang-xing-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值