1、集合和映射(Sets and Mappings)
①当我们认为一个对象是一个集合的元素的时候,我们有:
a
∈
S
a ∈ S
a∈S
②当我们向创建第三个集合的时候,我们采用笛卡尔积(Cartesian product):
A
×
B
A × B
A×B 。新的集合:
A
×
B
A × B
A×B 包含了所有的有序 paris
(
a
,
b
)
(
a
∈
A
&
&
b
∈
B
)
(a, b)( a ∈ A \&\& b ∈ B)
(a,b)(a∈A&&b∈B)
③常见的集合有:
④映射(Mapping): f f f 是一个从实数作为输入,映射到整数的函数。 f : R → Z , f : R → Z, f:R→Z, ,左边的我们称之为 作用域(domain),右边的我们称之为 值域(target)
⑤反函数(Inverse Mappings):如果我们有一个函数 f : A → B f : A → B f:A→B, 然后我们有一个反函数 f − 1 : B → A f^{−1} : B →A f−1:B→A。
⑥双射(bijections):一个双射函数形成一个对应,并且每一个输入值都有正好一个输出值以及每一个输出值都有正好一个输入值。
⑦交(∩,intersection)并(∪,unions)补(-,difference)
⑧对数(Logarithms):
y
=
log
a
x
⇔
a
y
=
x
y\,\,=\,\,\log _ax\,\,⇔\,\,a^y=x
y=logax⇔ay=x,其基本运算法则:
a
l
o
g
a
(
x
)
=
x
l
o
g
a
(
a
x
)
=
x
l
o
g
a
(
x
y
)
=
l
o
g
a
x
+
l
o
g
a
y
l
o
g
a
(
x
/
y
)
=
l
o
g
a
x
−
l
o
g
a
y
l
o
g
a
x
=
l
o
g
a
b
l
o
g
b
x
a^{log_a\left( x \right)}=x \\ log_a\left( a^x \right) =x \\ log_a\left( xy \right) =log_ax\,\,+\,\,log_ay \\ log_a\left( x/y \right) =logax\,\,-\,\,logay \\ log_ax=log_ab\,\,log_bx
aloga(x)=xloga(ax)=xloga(xy)=logax+logayloga(x/y)=logax−logaylogax=logablogbx
⑨弧度(radians):
d
e
g
r
e
e
s
=
180
π
r
a
d
i
a
n
s
r
a
d
i
a
n
s
=
π
180
d
e
g
r
e
e
s
degrees\,\,=\,\,\frac{180}{\pi}\,\,radians \\ radians\,\,=\,\,\frac{\pi}{180}\,\,degrees
degrees=π180radiansradians=180πdegrees
2、三角函数公式:
基本变换:
s
i
n
(
−
A
)
=
−
s
i
n
A
c
o
s
(
−
A
)
=
c
o
s
A
t
a
n
(
−
A
)
=
−
t
a
n
A
s
i
n
(
π
/
2
−
A
)
=
c
o
s
A
c
o
s
(
π
/
2
−
A
)
=
s
i
n
A
t
a
n
(
π
/
2
−
A
)
=
c
o
t
A
sin(−A) = −sinA \\ cos(−A) = cosA \\ tan(−A) = −tanA \\ sin(π/2 − A) = cosA \\ cos(π/2 − A) = sinA \\ tan(π/2 − A) = cotA
sin(−A)=−sinAcos(−A)=cosAtan(−A)=−tanAsin(π/2−A)=cosAcos(π/2−A)=sinAtan(π/2−A)=cotA
平方变换:
s
i
n
2
A
+
c
o
s
2
A
=
1
s
e
c
2
A
−
t
a
n
2
A
=
1
c
s
c
2
A
−
c
o
t
2
A
=
1
sin^2 A + cos^2 A = 1 \\ sec^2 A − tan^2 A = 1 \\ csc^2 A − cot^2 A = 1
sin2A+cos2A=1sec2A−tan2A=1csc2A−cot2A=1
加减变换:
s
i
n
(
A
+
B
)
=
s
i
n
A
c
o
s
B
+
s
i
n
B
c
o
s
A
s
i
n
(
A
−
B
)
=
s
i
n
A
c
o
s
B
−
s
i
n
B
c
o
s
A
s
i
n
(
2
A
)
=
2
s
i
n
A
c
o
s
A
c
o
s
(
A
+
B
)
=
c
o
s
A
c
o
s
B
−
s
i
n
A
s
i
n
B
c
o
s
(
A
−
B
)
=
c
o
s
A
c
o
s
B
+
s
i
n
A
s
i
n
B
c
o
s
(
2
A
)
=
c
o
s
2
A
−
s
i
n
2
A
t
a
n
(
A
+
B
)
=
t
a
n
A
+
t
a
n
B
1
−
t
a
n
A
t
a
n
B
t
a
n
(
A
−
B
)
=
t
a
n
A
−
t
a
n
B
1
+
t
a
n
A
t
a
n
B
t
a
n
(
2
A
)
=
2
t
a
n
A
1
−
t
a
n
2
A
sin(A + B) = sinA cosB + sinB cosA\\ sin(A − B) = sinA cosB − sinB cosA\\ sin(2A) = 2sinAcosA\\ cos(A + B) = cosA cosB − sinA sinB\\ cos(A − B) = cosA cosB + sinA sinB\\ cos(2A) = cos^2 A − sin^2 A\\ tan(A + B) =\frac{tanA + tanB}{1 − tanAtanB}\\ tan(A − B) =\frac{tanA − tanB}{1 + tanAtanB}\\ tan(2A) =\frac{2 tanA}{1 − tan2 A}
sin(A+B)=sinAcosB+sinBcosAsin(A−B)=sinAcosB−sinBcosAsin(2A)=2sinAcosAcos(A+B)=cosAcosB−sinAsinBcos(A−B)=cosAcosB+sinAsinBcos(2A)=cos2A−sin2Atan(A+B)=1−tanAtanBtanA+tanBtan(A−B)=1+tanAtanBtanA−tanBtan(2A)=1−tan2A2tanA
Half-angle identities:
s
i
n
2
(
A
/
2
)
=
(
1
−
c
o
s
A
)
/
2
c
o
s
2
(
A
/
2
)
=
(
1
+
c
o
s
A
)
/
2
sin^2(A/2) = (1 − cosA)/2\\ cos^2(A/2) = (1 + cosA)/2
sin2(A/2)=(1−cosA)/2cos2(A/2)=(1+cosA)/2
Product identities:
s
i
n
A
s
i
n
B
=
−
(
c
o
s
(
A
+
B
)
−
c
o
s
(
A
−
B
)
)
/
2
s
i
n
A
c
o
s
B
=
(
s
i
n
(
A
+
B
)
+
s
i
n
(
A
−
B
)
)
/
2
c
o
s
A
c
o
s
B
=
(
c
o
s
(
A
+
B
)
+
c
o
s
(
A
−
B
)
)
/
2
sinAsinB = −(cos(A + B) − cos(A − B))/2\\ sinAcosB= (sin(A + B) + sin(A − B))/2\\ cosAcosB= (cos(A + B) + cos(A − B))/2
sinAsinB=−(cos(A+B)−cos(A−B))/2sinAcosB=(sin(A+B)+sin(A−B))/2cosAcosB=(cos(A+B)+cos(A−B))/2
对于任意的三角形有: