【图形学】01 数学部分(一、集合和三角函数)

1、集合和映射(Sets and Mappings)

  ①当我们认为一个对象是一个集合的元素的时候,我们有:
a ∈ S a ∈ S aS
  ②当我们向创建第三个集合的时候,我们采用笛卡尔积(Cartesian product) A × B A × B A×B 。新的集合: A × B A × B A×B 包含了所有的有序 paris ( a , b ) ( a ∈ A & & b ∈ B ) (a, b)( a ∈ A \&\& b ∈ B) (a,b)aA&&bB

  ③常见的集合有:
在这里插入图片描述

  ④映射(Mapping): f f f 是一个从实数作为输入,映射到整数的函数。 f : R → Z , f : R → Z, f:RZ, ,左边的我们称之为 作用域(domain),右边的我们称之为 值域(target)

  ⑤反函数(Inverse Mappings):如果我们有一个函数 f : A → B f : A → B f:AB, 然后我们有一个反函数 f − 1 : B → A f^{−1} : B →A f1:BA

  ⑥双射(bijections):一个双射函数形成一个对应,并且每一个输入值都有正好一个输出值以及每一个输出值都有正好一个输入值。

  ⑦交(∩,intersection)并(∪,unions)补(-,difference)

  ⑧对数(Logarithms): y    =    log ⁡ a x    ⇔    a y = x y\,\,=\,\,\log _ax\,\,⇔\,\,a^y=x y=logaxay=x,其基本运算法则:
a l o g a ( x ) = x l o g a ( a x ) = x l o g a ( x y ) = l o g a x    +    l o g a y l o g a ( x / y ) = l o g a x    −    l o g a y l o g a x = l o g a b    l o g b x a^{log_a\left( x \right)}=x \\ log_a\left( a^x \right) =x \\ log_a\left( xy \right) =log_ax\,\,+\,\,log_ay \\ log_a\left( x/y \right) =logax\,\,-\,\,logay \\ log_ax=log_ab\,\,log_bx aloga(x)=xloga(ax)=xloga(xy)=logax+logayloga(x/y)=logaxlogaylogax=logablogbx

  ⑨弧度(radians):
d e g r e e s    =    180 π    r a d i a n s r a d i a n s    =    π 180    d e g r e e s degrees\,\,=\,\,\frac{180}{\pi}\,\,radians \\ radians\,\,=\,\,\frac{\pi}{180}\,\,degrees degrees=π180radiansradians=180πdegrees

2、三角函数公式:

基本变换:
s i n ( − A ) = − s i n A c o s ( − A ) = c o s A t a n ( − A ) = − t a n A s i n ( π / 2 − A ) = c o s A c o s ( π / 2 − A ) = s i n A t a n ( π / 2 − A ) = c o t A sin(−A) = −sinA \\ cos(−A) = cosA \\ tan(−A) = −tanA \\ sin(π/2 − A) = cosA \\ cos(π/2 − A) = sinA \\ tan(π/2 − A) = cotA sin(A)=sinAcos(A)=cosAtan(A)=tanAsin(π/2A)=cosAcos(π/2A)=sinAtan(π/2A)=cotA
平方变换:
s i n 2 A + c o s 2 A = 1 s e c 2 A − t a n 2 A = 1 c s c 2 A − c o t 2 A = 1 sin^2 A + cos^2 A = 1 \\ sec^2 A − tan^2 A = 1 \\ csc^2 A − cot^2 A = 1 sin2A+cos2A=1sec2Atan2A=1csc2Acot2A=1
加减变换:
s i n ( A + B ) = s i n A c o s B + s i n B c o s A s i n ( A − B ) = s i n A c o s B − s i n B c o s A s i n ( 2 A ) = 2 s i n A c o s A c o s ( A + B ) = c o s A c o s B − s i n A s i n B c o s ( A − B ) = c o s A c o s B + s i n A s i n B c o s ( 2 A ) = c o s 2 A − s i n 2 A t a n ( A + B ) = t a n A + t a n B 1 − t a n A t a n B t a n ( A − B ) = t a n A − t a n B 1 + t a n A t a n B t a n ( 2 A ) = 2 t a n A 1 − t a n 2 A sin(A + B) = sinA cosB + sinB cosA\\ sin(A − B) = sinA cosB − sinB cosA\\ sin(2A) = 2sinAcosA\\ cos(A + B) = cosA cosB − sinA sinB\\ cos(A − B) = cosA cosB + sinA sinB\\ cos(2A) = cos^2 A − sin^2 A\\ tan(A + B) =\frac{tanA + tanB}{1 − tanAtanB}\\ tan(A − B) =\frac{tanA − tanB}{1 + tanAtanB}\\ tan(2A) =\frac{2 tanA}{1 − tan2 A} sin(A+B)=sinAcosB+sinBcosAsin(AB)=sinAcosBsinBcosAsin(2A)=2sinAcosAcos(A+B)=cosAcosBsinAsinBcos(AB)=cosAcosB+sinAsinBcos(2A)=cos2Asin2Atan(A+B)=1tanAtanBtanA+tanBtan(AB)=1+tanAtanBtanAtanBtan(2A)=1tan2A2tanA
Half-angle identities:
s i n 2 ( A / 2 ) = ( 1 − c o s A ) / 2 c o s 2 ( A / 2 ) = ( 1 + c o s A ) / 2 sin^2(A/2) = (1 − cosA)/2\\ cos^2(A/2) = (1 + cosA)/2 sin2(A/2)=(1cosA)/2cos2(A/2)=(1+cosA)/2
Product identities:
s i n A s i n B = − ( c o s ( A + B ) − c o s ( A − B ) ) / 2 s i n A c o s B = ( s i n ( A + B ) + s i n ( A − B ) ) / 2 c o s A c o s B = ( c o s ( A + B ) + c o s ( A − B ) ) / 2 sinAsinB = −(cos(A + B) − cos(A − B))/2\\ sinAcosB= (sin(A + B) + sin(A − B))/2\\ cosAcosB= (cos(A + B) + cos(A − B))/2 sinAsinB=(cos(A+B)cos(AB))/2sinAcosB=(sin(A+B)+sin(AB))/2cosAcosB=(cos(A+B)+cos(AB))/2
对于任意的三角形有:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ePaGKoVy-1654065349920)(assets/image-20220311224729380.png)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值