约数函数的等价变换

先看看两道题:
BZOJ 4176 - Lucas的数论
51Nod 1220 - 约数之和
这两题,一个是求 ∑ i = 1 n ∑ j = 1 n σ 0 ( i j ) \displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j=1}^{n}\sigma_0(i j) i=1nj=1nσ0(ij),一个是求 ∑ i = 1 n ∑ j = 1 n σ 1 ( i j ) \displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j=1}^{n}\sigma_1(ij) i=1nj=1nσ1(ij),很自然的让人联~想到求 ∑ i = 1 n ∑ j = 1 n σ k ( i j ) \displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j=1}^{n}\sigma_k(ij) i=1nj=1nσk(ij)。更巧合的是,两题的起点都在一个对 σ \sigma σ 的转换上。具体而言,对 σ 0 ( m n ) \sigma_0(mn) σ0(mn) 可以转化为 ∑ i ∣ m ∑ j ∣ n [ g c d ( i , j ) = 1 ] \displaystyle\sum_{i|m}\displaystyle\sum_{j|n}[gcd(i,j)=1] imjn[gcd(i,j)=1],对 σ 1 ( m n ) \sigma_1(mn) σ1(mn) 可以转化为 ∑ s ∣ m ∑ t ∣ n m t s [ g c d ( s , t ) = 1 ] \displaystyle\sum_{s|m}\displaystyle\sum_{t|n}\frac{mt}{s}[gcd(s,t)=1] smtnsmt[gcd(s,t)=1]。尤其是在对后者有一个感性认识后能自然联~想到这样的转换: σ k ( m n ) = ∑ s ∣ m ∑ t ∣ n m k t k s k [ g c d ( s , t ) = 1 ] \sigma_k(mn)=\displaystyle\sum_{s|m}\displaystyle\sum_{t|n}\frac{m^kt^k}{s^k}[gcd(s,t)=1] σk(mn)=smtnskmktk[gcd(s,t)=1],并且的确可以通过归纳证明。这在处理 σ k \sigma_k σk 相关问题时可以作为一个思考方向。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值