(1)问题描述:
直方图中最大矩形面积,一个直方图是有许多矩形组成的,在给定的直方图中找出最大的矩形面积,
直方图中最大矩形面积,一个直方图是有许多矩形组成的,在给定的直方图中找出最大的矩形面积,
为了简化,假定所有矩形的宽为1。
(2)直方图最大面积的算法理解:
1、将一个起伏的直方图分解成一个个小的递增的直方图,
2、再计算每个递增直方图的最大面积
3、遍历完成之后会得到一个递增的栈,栈的值所对应的直方图的高也是递增的
3、那么用同样的思路计算出这个递增的直方图的最大面积。
代码实现:
public int largestRectangleArea(int[] array){
ArrayStack stack = new ArrayStack(10);
int max_area = 0;
int top = 0;
int area_with_top;
int i = 0;
int length = array.length;
while(i<length){
if (stack.isEmpty()||array[i]>=array[stack.peek()]){
stack.push(i++);
}else {
top = stack.pop();
area_with_top = array[top]*(stack.isEmpty()?i:(i-stack.peek()-1));
max_area = Math.max(area_with_top,max_area);
}
}
while(!stack.isEmpty()){
top = stack.pop();
area_with_top = array[top]*(stack.isEmpty()?i:(i-stack.peek()-1));
max_area = Math.max(area_with_top,max_area);
}
return max_area;
}
运行结果: