深度学习
喜欢爱喝矿泉水的男孩
愿山野浓雾都有路灯风雨漂泊都能归舟
展开
-
Darknet cfg_yolov3-voc参数说明
[net]# Testing 测试模式# batch=1# subdivisions=1# Training 训练模式batch=64 一批训练样本的样本数量,每batch个样本更新一次参数...原创 2019-03-19 16:41:19 · 582 阅读 · 6 评论 -
关于ubuntu nvidia-smi CUDA Version:ERR \不使用GPU 问题
今天早上本来打算重新训练一下模型,当我像往常一样输入训练命令的时候出问题了[ /job:localhost/replica:0/task:0/device:CPU:0 ]当我看到CPU的时候瞬间蒙了,我指定的是使用GPU为什么出现CPU被占满的错误,于是开始上网搜索,试了好多种方法,例如:没有安装tensorflow-gpu、tensorflow-gpu版本没有和cuda相对应 te...原创 2020-01-09 14:58:59 · 3974 阅读 · 1 评论 -
强大的杀伤力武器--TX2嵌入式开发板
Tegra X2:Jetson TX2 延续了该系列体积小巧、高度集成的特性,大小仅相当于一张信用卡。 与前一代Jetson TX1相比,TX2能提供两倍的功效。GPU、CPU都进行了升级,其中GPU变成了Pascal 架构(16 nm工艺)。 这意味着Jetson 系列进入了 Pascal 架构时代。内存、存储都增加了一倍,提供了 8G 内存、32G 固态存储器。 支持802.11ac...原创 2019-03-22 14:45:30 · 3045 阅读 · 1 评论 -
tusimple车道线检测 处理自己的数据集 用自己的数据集训练模型
标注数据将自己的数据用labelme(至于如何安装和使用请自查)打开,然后选择线段或者点进行标注,标注完成之后会生成json格式的标注信息。处理数据处理得到的json文件,会生成这五个类型的文件我这里使用的是批量转换.sh命令,代码如下(如你的数据是单个的你可用自带的命令来生成):单个数据转换labelme_json_to_dataset <文件名>....原创 2019-12-19 16:29:24 · 6351 阅读 · 16 评论 -
已解决 AttributeError: module ‘tensorflow‘ has no attribute ‘random‘
今天运行py文件的时候发现出了这个错,经过了很多方法以及查找都没能解决,删了重装已经试了无数次了也不行,于是我把tensorflow的版本给升级了一下,解决问题了。(之前是1.10的我升到了1.12)升级tebsorflow或者也可以尝试重装(我反正是不行)...原创 2019-11-01 13:33:29 · 14492 阅读 · 0 评论 -
车道线检测 ubuntu16.04 tusimple数据集 服务器训练车道线检测 lanenet-lane-detection
下载数据集LaneNet车道线检测使用的是Tusimple数据集,下载它下载完之后放到这个路径下,然后解压。配置环境github作者使用的是这套环境博主使用了tensorflow-gpu==1.12.0环境,这个文件里面写了我们需要用的包,执行命令pip install -r requirements.txt博主在下载到tensorflow-gpu、gl...原创 2019-11-01 11:41:08 · 10450 阅读 · 43 评论 -
ubuntu16.04 GPU服务器anaconda重装 移动 后不能使用的情况
公司购置了GPU服务器,厂商装了Anaconda,但服务器被公司加域了,所以导致user账户和域账户不在同一目录下致使conda list不能使用(具体原因应该是权限问题,博主也不是很清楚,但移动之后解决了)解决办法1.卸载conda,并重装(最直接的办法)rm -rf 目录/anaconda3 #删除anacondavim ~/.bashrc #修改anaconda配置文件e...原创 2019-10-31 13:42:30 · 251 阅读 · 0 评论 -
深度学习笔记(CNN RNN)
Rmsprop:权值更新算法:https://blog.csdn.net/tsq292978891/article/details/78619384深度学习笔记——RNN(LSTM、GRU、双向RNN)学习总结:https://blog.csdn.net/mpk_no1/article/details/72875185深度学习——RNN(2)双向RNN深度RNN几种变种:htt...原创 2019-04-03 16:25:06 · 302 阅读 · 0 评论 -
BiGRU-Attention 模型训练方法
BiGRU-Attention 模型训练方法本文 BiGRU-Attention 模型以 IMDB 数据集、预设参数和 迭代次数 N 为输入,经过文本向量化输入层把 IMDB 数据集处理词向量的形式,利用 BiGRU-Attention 模型对 IMDB 数据集进行分类。 算法 BiGRU-Attention 神经网络的文本情感分类算法 输入: IMDB 数据集、预设参数、迭代次数 N。 输出...原创 2019-04-03 16:23:39 · 6130 阅读 · 4 评论 -
BiGRU-Attention 模型
BiGRU-Attention 模型BiGRU-Attention 模型共分为三部分:文本向量化输入层、 隐含层和输出层。其中,隐含层由 BiGRU 层、attention 层和 Dense 层(全连接层)三层构成。BiGRU-Attention 模型结构如图 6 所示。下面对这三层的功能分别进行介绍:输入层 输入层即文本向量化输入层主要是对IMDB电影评论的25 000条...原创 2019-04-03 16:18:17 · 21970 阅读 · 6 评论 -
SVM(支持向量机)超详细 超高能
目录对偶问题Lagrange对偶函数(dual function线性方程的最小二乘问题强对偶条件Karush-Kuhn-Tucker (KKT)条件主要内容和目标支撑超平面分割超平面分割超平面的构造分割超平面的思考线性分类问题输入数据各种概念线性可分支持向量机整理符号二维平面上线性分类问题线性可分支持向量机使用(高斯...原创 2019-03-22 16:32:23 · 1618 阅读 · 1 评论 -
python opencv PIL 视频分割成图片 图片合成为视频 修改图片大小(抗锯齿)
Python代码将原有的视频分割成图片,我的例子是一帧一帧的分割用python+opencv完成视频的分割import cv2 #导入opencv模块print(2) #测试是否运行vc=cv2.VideoCapture("test.mp4") #读取视频,(***.***)例子:(test.mp4)c=1 #一帧一帧的分割 需要几帧写几if vc.isOpened(): ...原创 2019-03-23 11:05:09 · 2998 阅读 · 2 评论 -
图像、视频超分辨率重建项目
何为超分辨率重建超分辨率(Super-Resolution)即通过硬件或软件的方法提高原有图像的分辨率,通过一系列低分辨率的图像来得到一幅高分辨率的图像过程就是超分辨率重建。超分辨率重建的核心思想就是用时间带宽(获取同一场景的多帧图像序列)换取空间分辨率,实现时间分辨率向空间分辨率的转换建的核心思想就是用时间带宽(获取同一场景的多帧图像序列)换取空间分辨率,实现时间分辨率向空间分辨率的转换...原创 2019-04-03 14:18:52 · 2833 阅读 · 6 评论 -
RNN( Recurrent Neural Networks循环神经网络)
前言:CNN模型主要用到人类的视觉中枢,但其有一劣势,无论是人类的视觉神经还是听觉神经,所接受到的都是一个连续的序列,使用CNN相当于割裂了前后的联系。CNN,训练样本输入输出确定,(输入连续的序列,长短不一:一段连续的手写文字),比较难切分一个独立样本:【我是中国人,我的母语是_______。】RNN 是一种用来处理和预测序列数据的特殊的神经网络,这种神经网络的功能与人的一些思考习惯类似...原创 2019-04-03 15:17:05 · 481 阅读 · 0 评论 -
长短期记忆神经Long Short-Term Memory( LSTM)
LSTMRNN 基本的算法思想是随时间反向传播算法,但在随时间反向传播过程中,跨时间步和长时间学习使后续节点的梯度往往不能按照初值传到最初的位置,容易出现梯度弥散问题。为了克服梯度弥散的缺点,RNN的众多变体被提出,其中 LSTM 就是 RNN 变体中一种广泛应用的经典变体。LSTM 单个神经 元的具体结构如图 2 所示。LSTM 的具体工作原理可以通过以下几个公式进行理解:...原创 2019-04-03 15:37:58 · 1390 阅读 · 0 评论 -
GRU网络
GRU网络简介随着 LSTM 在自然语言处理特别是文本分类任务的广泛应 用,人们逐渐发现 LSTM 具有训练时间长、参数较多、内部计 算复杂的缺点。Cho 等人在 2014 年进一步提出了更加简单的、 将 LSTM 的单元状态和隐层状态进行合并的、还有一些其他的 变动的 GRU 模型。将忘记门和输入门合成了一个单一的更新门。同样还混合了细胞状态和隐藏状态。GRU把LSTM中的遗忘门和输入们...原创 2019-04-03 15:44:21 · 5664 阅读 · 2 评论 -
大杀器 双向RNN
双向RNNBidirectional RNN(双向RNN)假设当前t的输出不仅仅和之前的序列有关,并且 还与之后的序列有关,例如:预测一个语句中缺失的词语那么需要根据上下文进 行预测;Bidirectional RNN是一个相对简单的RNNs,由两个RNNs上下叠加在 一起组成。输出由这两个RNNs的隐藏层的状态决定。...原创 2019-04-03 15:57:52 · 1177 阅读 · 0 评论 -
BiGRU
BiGRU在单向的神经网络结构中,状态总是从前往后输出的。然而,在文本情感分类中,如果当前时刻的输出能与前一时刻的状态和后一时刻的状态都产生联系。如对这样一个句子进行选词 填空 The sea water in the deep sea is so____ that the sun does not shine.通过在 The sea water in the deep sea 和 the s...原创 2019-04-03 16:01:25 · 25899 阅读 · 1 评论 -
Attention model
Attention modelAttention 机制在语音识别、机器翻译和词性标注等序列化 数据中表现非凡,attention 机制可以单独使用,也可以在其他 混合模型中作为其他混合模型的层使用,可以放在文本向量输 入层之后也可以放在其他网络模型训练数据之后,通过对数据 进行自动加权变换,把两个不同的部分联系起来,突出重点的 词语,使整个系统表现出更好的性能。Attention 机制类似人脑...原创 2019-04-03 16:05:07 · 312 阅读 · 0 评论 -
YOLO(You Only Look Once) 检测多张图片并保存标签信息
YOLO是一个基于深度学习的end-to-end、real-time目标检测方法,至今已经有YOLOv1、YOLOv2、YOLO9000、YOLOv3 4个版本。YOLO网络由作者用C和CUDA语言写的一个卷积神经网络框架darknet实现,目前github也有tensorflow,pytorch等开源框架的复现,本文主要基于darknet源码修改实现对一个目录下的图片进行检测并保存检测结果图片和...转载 2019-03-22 10:54:41 · 2175 阅读 · 1 评论