TensorFlow2.x——回归模型(regression)搭建

回归模型(regression)搭建

回归模型是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,房价预测等。

代码示例:

import matplotlib as mpl
import matplotlib.pyplot as plt 
%matplotlib inline    
#为了能在notebook中显示图像
import numpy as np
import sklearn   
import pandas as pd 
import os 
import sys 
import time 
import tensorflow as tf 
from tensorflow import keras 
from sklearn.datasets import fetch_california_housing #从sklearn中引用加州的房价数据

housing = fetch_california_housing()
print(housing.DESCR)
print(housing.data.shape)
print(housing.target.shape)

(20640, 8)
(20640,)

import pprint
#引用pprint展示部分数据,pprint打印更加完整的数据结构,易于查看
pprint.pprint(housing.data[0:5])
pprint.pprint(housing.target[0:5])
array([[ 8.32520000e+00,  4.10000000e+01,  6.98412698e+00,
         1.02380952e+00,  3.22000000e+02,  2.55555556e+00,
         3.78800000e+01, -1.22230000e+02],
       [ 8.30140000e+00,  2.10000000e+01,  6.23813708e+00,
         9.71880492e-01,  2.40100000e+03,  2.10984183e+00,
         3.78600000e+01, -1.22220000e+02],
       [ 7.25740000e+00,  5.20000000e+01,  8.28813559e+00,
         1.07344633e+00,  4.96000000e+02,  2.80225989e+00,
         3.78500000e+01, -1.22240000e+02],
       [ 5.64310000e+00,  5.20000000e+01,  5.81735160e+00,
         1.07305936e+00,  5.58000000e+02,  2.54794521e+00,
         3.78500000e+01, -1.22250000e+02],
       [ 3.84620000e+00,  5.20000000e+01,  6.28185328e+00,
         1.08108108e+00,  5.65000000e+02,  2.18146718e+00,
         3.78500000e+01, -1.22250000e+02]])
array([4.526, 3.585, 3.521, 3.413, 3.422]
#引用train_test_split对数据集进行拆分
# test_size 控制切分比例,默认切分比例3:1
from sklearn.model_selection import train_test_split  

#拆分数据集,加载数据集后返回训练集以及测试集
x_train_all, x_test, y_train_all, y_test = train_test_split(housing.data, housing.target, random_state = 1) 

#将训练集进行一次拆分为验证集和测试集
x_train, x_valid, y_train, y_valid = train_test_split(x_train_all, y_train_all, random_state=2)

print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)

(11610, 8) (11610,)
(3870, 8) (3870,)
(5160, 8) (5160,)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
#对数据进行归一化处理

#由于transform处理处理数据时二维数组,所以要将数据转化一下
#x_train: [none, 28, 28] -> [none, 784]
#对于使用fit_transform 和transform 请参考我的TensorFlow中的博客
x_train_scaled = scaler.fit_transform(x_train)
x_valid_scaled = scaler.transform(x_valid)
x_test_scaled = scaler.transform(x_test)

#注意在归一化数据后,之后使用的数据要使用新的归一化数据
#使用序贯模型Sequential   tf.keras.models.sequential()

model = keras.models.Sequential([
    #keras.layers.Flatten(input_shape = x_train.shape[1:]),如果数据已经展平,真不用再使用flatten。
    keras.layers.Dense(30, activation="relu",input_shape = x_train.shape[1:]),
    keras.layers.Dense(1),
])
model.summary()
Model: "sequential_3"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_6 (Dense)              (None, 30)                270       
_________________________________________________________________
dense_7 (Dense)              (None, 1)                 31        
=================================================================
Total params: 301
Trainable params: 301
Non-trainable params: 0
_________________________________________________________________
#编译compile
model.compile(loss = "mean_squared_error",   #损失函数:使用均方根误差
             optimizer = "sgd", #优化函数 
             ) 


#训练模型会,返回一个结果保存在history中
history = model.fit(x_train_scaled, y_train, epochs=50, 
                    validation_data=(x_valid_scaled, y_valid), 
                    ) 
Train on 11610 samples, validate on 3870 samples
Epoch 1/50
11610/11610 [==============================] - 2s 167us/sample - loss: 0.3132 - val_loss: 0.3154
Epoch 2/50
11610/11610 [==============================] - 1s 106us/sample - loss: 0.3109 - val_loss: 0.3166
Epoch 3/50
11610/11610 [==============================] - 1s 97us/sample - loss: 0.3138 - val_loss: 0.3184
Epoch 4/50
11610/11610 [==============================] - 1s 101us/sample - loss: 0.3107 - val_loss: 0.3133
Epoch 5/50
11610/11610 [==============================] - 1s 94us/sample - loss: 0.3150 - val_loss: 0.3164
Epoch 6/50
11610/11610 [==============================] - 1s 95us/sample - loss: 0.3243 - val_loss: 0.3166
Epoch 7/50
11610/11610 [==============================] - 1s 96us/sample - loss: 0.3161 - val_loss: 0.3155
Epoch 8/50
11610/11610 [==============================] - 1s 99us/sample - loss: 0.3143 - val_loss: 0.3162
Epoch 9/50
11610/11610 [==============================] - 1s 103us/sample - loss: 0.3118 - val_loss: 0.3161
model.evaluate(x_test_scaled, y_test)

0.33426328003406525

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
好的,我明白了,我会按照你的要求回答问题。以下是我的回答: 1. 逻辑回归模型是一种广泛应用于分类问题的统计学习模型。它是建立在线性回归模型的基础之上,通过对线性模型的输出进行逻辑变换,将连续的输出转化为概率的形式,从而实现对分类问题的建模。逻辑回归模型的核心思想是通过对样本的特征进行加权求和,得到样本的线性得分,然后将线性得分转化为概率的形式,最终进行分类决策。 2. 逻辑回归模型的参数估计算法通常采用最大似然估计法。最大似然估计法的核心思想是寻找一组最优的模型参数,使得在给定模型的情况下,观测数据出现的可能性最大化。在逻辑回归模型中,最大似然估计法的目标是使得模型的预测概率与观测数据的标签一致的概率最大化。具体来说,可以通过梯度下降算法等优化方法来求解最大似然估计问题。 下面是使用Python代码实现逻辑回归模型的参数估计过程的示例: ```python import numpy as np from scipy.optimize import minimize def sigmoid(x): return 1 / (1 + np.exp(-x)) def log_likelihood(theta, X, y): z = np.dot(X, theta) log_like = np.sum(y * z - np.log(1 + np.exp(z))) return log_like def logistic_regression(X, y): n, p = X.shape X = np.hstack((np.ones((n, 1)), X)) theta_init = np.zeros(p + 1) res = minimize(lambda theta: -log_likelihood(theta, X, y), theta_init, method='BFGS') return res.x # 测试代码 X = np.array([[1, 2], [3, 4], [5, 6]]) y = np.array([0, 1, 0]) theta = logistic_regression(X, y) print(theta) ``` 以上代码中,sigmoid函数用来对线性得分进行逻辑变换,log_likelihood函数用来计算给定模型参数下的最大似然估计值,logistic_regression函数用来对数据进行预处理,并通过最大化似然估计值来求解逻辑回归模型的参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值