就是 floyd 的考验
其实这题更加深入的了解了下 floyd,虽然一直觉得这个算法有点蠢就没怎么学过
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
mp[i][j] = min(mp[i][j],m[i][k] + mp[k][j]);
这短短5行有个重要信息,就是 k 代表以 k 为中转站 , i j 之间最短距离,这 k 代表中转,非常类似 dp 思路,不断地根据 k 为中转站推出不同点之间的距离。
而这道题只加入了一个信息,就是某个点在某个时刻才可以使用,那么我们肯定还是用 Floyd 跑一边的,跑的时候以 k 为中转,那么我们可以加入一部判断, 看看所有k是否都是可行的(t 是递增的,只要一个k 可以那么后边的时候这个点都可以),之后暴力更新,再判断起点终点是否是可以的,,这样就完成了,O(n^3 + q) n 比较小,所以可以接受。
以下是AC代码
#include<bits/stdc++.h>
using namespace std;
inline int read()
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
const int maxn = 205;
const int maxm = 50005;
const int INF = 0x3f3f3f3f;
bool vis[maxn];
int t[maxn];
int fr[maxm],to[maxm],day[maxm];
int mp[maxn][maxn];
int main()
{
int n=read(), m=read();
for(int i=0;i<n;i++)
{
t[i] = read();
}
memset(vis,false,sizeof vis);
memset(mp,INF,sizeof mp);
for(int i=1;i<=m;i++)
{
int x=read(),y=read(),w=read();
mp[x][y]=mp[y][x]=w;
}
int q=read();
for(int i=1;i<=q;i++)
{
fr[i]=read(),to[i]=read(),day[i]=read();
}
for(int f=1;f<=q;f++)
{
for(int k=0;k<n;k++)
{
if(t[k] <= day[f] && !vis[k])
{
vis[k] = true;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(mp[i][j]>mp[i][k]+mp[k][j]&&mp[i][k]!=INF&&mp[k][j]!=INF&&i!=j&&i!=k&&j!=k)
mp[i][j] = mp[i][k] + mp[k][j];
}
}
if(t[fr[f]]<=day[f] && t[to[f]]<=day[f] && mp[fr[f]][to[f]] != INF)
printf("%d\n",mp[fr[f]][to[f]]);
else
printf("-1\n");
}
return 0;
}