ICLR20: Pre-GNN STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS

talk

胡伟华+jure、这篇文章是 图-level的task,鉴于经常看到,因此看看~

摘要

机器学习的应用要求模型在测试集上的效果也好,通常测试的分布不同于训练的数据,且训练标签稀少。一个有效的方法是在数据充足的数据上预训练,然后微调。cv+nlp很常见。本文提出在 node+graph上要一起预训练,两者缺一不可。

1. INTRODUCTION

迁移学习:在一些任务上预训练,然后在相关任务上重新复用。 预训练能够解决两个问题:1.标签少 2. 分布外泛化问题
迁移学习的成功 不仅 需要增加预训练数据的样本(相同域)还要实质性的域经验来选择那些和下游任务相关的样本,否则会导致负迁移
本文针对预训练在graph-level的预测问题。2方面贡献: 1.第一个系统性调研图上预训练并建立了数据集。 2.设计方法来解决域外难迁移问题。 发现:并不是预训练gnn就有效,naive去会导致负迁移。令人吃惊的是:sota的图级多任务监督预训练收效甚微,且很多数据集上发生负迁移。
本文方法:是使用节点和边的信息来使得GNN捕获domain-specific的信息,帮助graph-level的信息,从local和global上。并且强调,单方面只关注graph-level不行,node的经过readout 也会有助于图级。

2. PRELIMINARIES OF GRAPH NEURAL NETWORKS

在这里插入图片描述

3. STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORK

3.1 NODE-LEVEL PRE-TRAININ

3.1.1 context prediction

使用子图来预测他们周围的图结构。目的是 相似结构的节点的表征相近
这里首先定义节点的K跳邻居。 context就是 r1-r2的邻居所构成的子图。通常r1<K,使得邻居和上下文context共享一部分nodes,这些节点被称为 context anchor nodes。 是 r2圆-r1圆 面积 中的节点
在这里插入图片描述
使用一个GNN将context graphs 编码成固定长度的 vectors。 这个context GNN先学到nodes的然后avg得到fixed’的向量。
采用负采样二分类来联合学习GNN和context GNN。判断是否neighbor和context是属于相同的一个节点。 正负样本对相同,损失采用负对数似然(GraphSAGE那个 类似于infonce)
在这里插入图片描述

3.1.2 ATTRIBUTE MASKING: EXPLOITING DISTRIBUTION OF GRAPH ATTRIBUTES

mask节点或者边的属性,让GNN去预测。
在这里插入图片描述

3.2 GRAPH-LEVEL PRE-TRAININ

有两种图级上的预训练,预测整个图的属性(比如标签),或者预测图的结构

3.2.1 SUPERVISED GRAPH-LEVEL PROPERTY PREDICTION

采用:

graph-level multi-task supervised pre-training to jointly predict a diverse set of supervised labels of individual graphs

比如分子中 通过预测分子的属性。蛋白质预测中,预测已经知道的蛋白质的功能。
如果只采用graph-level的预测,是不可行的,会负迁移。因此3.1 node的不可少。

3.2.2 STRUCTURAL SIMILARITY PREDICTION

实现起来复杂,leave this for future work。

3.3 OVERVIEW: PRE-TRAINING GNNS AND FINE-TUNING FOR DOWNSTREAM TASKS

节点级自监督预训练+ 图级多任务监督预训练

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值