CIKM 2020: Graph Few-shot Learning with Attribute Matching

AMM-GNN是一种针对属性网络的图元学习框架,旨在解决不同任务间特征分布差异的问题。通过属性级注意力机制,该框架能更好地捕捉任务间的差异信息,提升元测试阶段的性能。文章介绍了AMM-GNN的具体实现,包括使用双向量增强特征矩阵,采用多层感知器生成匹配向量,并在损失函数中加入正则化项以保持不同采样间的匹配向量一致性。实验结果显示,AMM-GNN在多个数据集上表现出优越性能。
摘要由CSDN通过智能技术生成

文章信息

在这里插入图片描述

摘要

尽管最近的一些研究试图将元学习与图神经网络结合起来,以便在属性网络上进行少镜头学习,但在元训练阶段创建不同的任务时,它们没有考虑到属性网络的独特属性——不同任务的特征分布可能非常不同,因为实例(即节点)不遵循数据i.i.d.对属性网络的假设。因此,它可能不可避免地导致元测试阶段的次优性能。为了解决上述问题,我们提出了一种新的图元学习框架——属性匹配元学习图神经网络(AMM-GNN)。具体来说,提出的AMM-GNN利用属性级的注意机制来捕获每个任务的不同信息,从而学习更有效的可转移知识进行元学习。我们在广泛的设置下对真实世界的数据集进行了广泛的实验,实验结果证明了所提出的AMM-GNN框架的有效性。

方法

这篇文章是MetaGNN的 扩展版本, 同样采用元学习框架MAML, 作者强调不同任务中 不同节点的 重要性不同,采用注意力来优化。 具体是采用 两个向量 来对 特征矩阵进行增强,从而使得 每个 节点的 每个特征都包含两个可优化的参数
在这里插入图片描述
在这里插入图片描述

文章的 关键: 如何计算这个两个向量

在这里插入图片描述
在这里插入图片描述
对于第一个属性(1),我们可以在𝑔𝝓𝜶和𝑔𝝓𝒃的生成器中对矩阵ˆ𝑿𝑡进行左乘法1,以避免所得到的匹配向量中不同属性之间的交集。对于属性(2),我们在第𝑡个任务T𝑡中对节点2进行了两次随机抽样,以减少随机性。具体来说,设V𝑡𝑖为第𝑖次采样的节点集(𝑖=1,2),ˆ𝑿𝑖𝑡为相应的聚合特征矩阵。我们设计了元训练中第𝑡个任务T𝑡的第𝑖次采样的匹配向量𝜶𝑡𝑖和𝒃𝑖𝑡
在这里插入图片描述
对于𝑖=1,2,其中MLP𝝓𝛼(·)和MLP𝝓𝒃(·)是多层感知器(MLP),只有左乘法,分别由𝝓𝛼和𝝓𝑏参数化。然后,将元训练中第𝑡个任务T𝑡的匹配向量𝜶𝑡和𝒃𝑡计算为随机抽样的平均池,即:
在这里插入图片描述
支持集 的损失函数 交叉熵
在这里插入图片描述
查询集损失:

在这里插入图片描述
加入了正则化项,以确保不同采样之间的匹配向量尽可能相似。
在这里插入图片描述

流程:

在这里插入图片描述

实验

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值