机器学习之模型的选择与调优

1.交叉验证相关概念

交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成4份,其中一份作为验证集。然后经过4次(组)的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终结果。又称4折交叉验证。

在这里插入图片描述

2.超参数搜索-网格搜索

通常情况下,有很多参数是需要手动指定的 (如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型在这里插入图片描述

在这里插入图片描述

2.1 超参数搜索-网格搜索API

在这里插入图片描述

2.2 交叉验证与网格搜索对K-近邻算法的调优

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import pandas as pd


def knncls():
    """
    K-近邻预测用户签到位置
    :return:None
    """
    # 读取数据
    data = pd.read_csv("./data/FBlocation/train.csv")

    # print(data.head(10))

    # 处理数据
    # 1、缩小数据,查询数据晒讯
    data = data.query("x > 1.0 &  x < 1.25 & y > 2.5 & y < 2.75")

    # 处理时间的数据
    time_value = pd.to_datetime(data['time'], unit='s')

    print(time_value)

    # 把日期格式转换成 字典格式
    time_value = pd.DatetimeIndex(time_value)

    # 构造一些特征
    data['day'] = time_value.day
    data['hour'] = time_value.hour
    data['weekday'] = time_value.weekday

    # 把时间戳特征删除
    data = data.drop(['time'], axis=1)    # axis=1表示列,按照列删除,axis=0表示行

    print(data)

    # 把签到数量少于n个目标位置删除
    place_count = data.groupby('place_id').count()

    tf = place_count[place_count.row_id > 3].reset_index()

    data = data[data['place_id'].isin(tf.place_id)]

    # 取出数据当中的目标值和特征值
    y = data['place_id']          # y为目标值

    x = data.drop(['place_id'], axis=1)  # x为特征值

    # 进行数据的分割训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 特征工程(标准化)
    std = StandardScaler()

    # 对测试集和训练集的特征值进行标准化
    x_train = std.fit_transform(x_train)

    x_test = std.transform(x_test)

    # 进行算法流程 # 超参数
    knn = KNeighborsClassifier()

    # # fit, predict,score
    # knn.fit(x_train, y_train)
    #
    # # 得出预测结果
    # y_predict = knn.predict(x_test)
    #
    # print("预测的目标签到位置为:", y_predict)
    #
    # # 得出准确率
    # print("预测的准确率:", knn.score(x_test, y_test))

    # 构造一些参数的值进行搜索
    param = {"n_neighbors": [3, 5, 10]}

    # 进行网格搜索
    gc = GridSearchCV(knn, param_grid=param, cv=2)

    gc.fit(x_train, y_train)

    # 预测准确率
    print("在测试集上准确率:", gc.score(x_test, y_test))

    print("在交叉验证当中最好的结果:", gc.best_score_)

    print("选择最好的模型是:", gc.best_estimator_)

    print("每个超参数每次交叉验证的结果:", gc.cv_results_)

    return None


if __name__ == "__main__":
    knncls()

输出的结果为:在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
XGBoost是一种用于机器学习的强大算法,它可以在分类和回归任务中获得很好的性能。但是,为了达到最佳性能,需要对其超参数进行调整。 以下是XGBoost中需要调整的一些重要超参数: 1. n_estimators:决定树的数量,也就是模型中的基本学习者数量。 2. max_depth:树的最大深度,过高的深度可能导致过度拟合。 3. learning_rate:控制每个基本学习器的权重更新步长。 4. subsample:每次训练模型时用于构建树的样本比例。 5. colsample_bytree:每次训练模型时用于构建树的特征比例。 6. gamma:控制当树分裂时,节点的最小损失减少量。 7. reg_alpha:L1正则化参数,用于控制模型的复杂度。 8. reg_lambda:L2正则化参数,用于控制模型的复杂度。 下面是一个简单的XGBoost参数调优示例: ```python import xgboost as xgb from sklearn.datasets import load_digits from sklearn.model_selection import GridSearchCV # 加载数据集 digits = load_digits() X, y = digits.data, digits.target # 定义参数范围 param_grid = {'n_estimators': [50, 100, 150], 'max_depth': [2, 3, 4], 'learning_rate': [0.01, 0.1, 0.5], 'subsample': [0.6, 0.8, 1.0], 'colsample_bytree': [0.6, 0.8, 1.0], 'gamma': [0, 0.1, 0.2], 'reg_alpha': [0, 0.1, 1], 'reg_lambda': [0, 0.1, 1]} # 定义分类器 xgb_model = xgb.XGBClassifier(objective='multi:softmax', num_class=10) # 定义网格搜索 grid_search = GridSearchCV(estimator=xgb_model, param_grid=param_grid, cv=5, n_jobs=-1) # 进行参数调优 grid_search.fit(X, y) # 输出最佳参数 print("Best parameters found: ", grid_search.best_params_) ``` 在上面的代码中,我们使用了网格搜索来寻找最佳超参数。我们定义了一个参数范围字典,包含了所有需要调整的超参数及其可能的值。然后,我们定义了一个XGBoost分类器,并将其作为估计器传递给网格搜索。最后,我们调用fit()方法来运行网格搜索,找到最佳参数组合。 总的来说,XGBoost是一种非常强大的机器学习算法,但是需要调整一些重要的超参数才能实现最佳性能。通过调整这些超参数,可以使XGBoost在分类和回归任务中获得更好的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值