根据成绩预测大学生能否被高校录取

github源码和数据下载

1、首先,导入库,并且读取数据集。原来数据集是 .txt 结尾的。
    由于原始数据中并没有给出每一列的列的名字,所以,我们自己加一个 “Exam 1”、"“Exam 2”、“Admitted”,我们最好列举前几行数据,确认一下是否读入了数据,并且,看一下数据的维度:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import os

# 路径
path = 'LogiReg_data.txt'
# 原文件没有表头,加一个表头:'Exam1','Exam2','Admitted'
pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
# 输出读取数据
print(pdData)
pdData.head()
pdData.shape
结果:
在这里插入图片描述

2.将数据分成正负样本,利用散点图,大致看一下数据分布(不是必要步骤,而且因为数据只有两个维度,才添加了此步骤)

# 录取
positive = pdData[pdData['Admitted'] == 1]
# 未录取
negative = pdData[pdData['Admitted'] == 0]

# fig表示窗口,ax表示坐标轴
fig, ax = plt.subplots(figsize=(10, 5))
# 散布点,c='b'表示蓝色。 marker='x'表示标记  label左为左上角的标签
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')


# 绘图
plt.show()
绘图结果:
在这里插入图片描述
补充说明一下:Admitted 是标签,当标签为 1 时,认为是正样本;标签为 0 时,认为是负样本。而 pd Data[‘Admitted’] == 1,是一堆 True 和 false

3、逻辑回归
此部分,我们主要建立一个分类器:也就是求解 theta 值。然后设定阈值,根据阈值,判断是否被录取。
主要步骤如下:

(1)、定义 sigmoid 函数

# 定义sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

sigmoid 函数是将预测值(比如线性回归中的结果),映射为概率的一个函数。形式为:
在这里插入图片描述

# creates a vector containing 20 equally spaced values from -10 to 10
nums = np.arange(-10, 10, step=1)
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(nums, sigmoid(nums), 'r')
# 绘图
plt.show()

其中,自变量 z 为任意值,而 g(z) 的值域为 (0,1),(0,1)也就是对应着概率的大小。曲线图如下
在这里插入图片描述

(2)定义模型,也就是预测函数

# 定义模型函数
# X 是样本数据,它的每一行都是一个样本,每一列为样本的某一个特征。
# theta 表示参数,它是我们通过学习获得的,其中,对于每一个特征,都对应一个 theta
def model(X, theta):
    return sigmoid(np.dot(X, theta.T))

在这里插入图片描述
将 sigmoid () 函数的自变量 z 变成上式。其中,X 是样本数据,它的每一行都是一个样本,每一列为样本的某一个特征。theta 表示参数,它是我们通过学习获得的,其中,对于每一个特征,都对应一个 theta ,即
在这里插入图片描述
其中,为偏置项,因此,要在原始数据上补上一列,值为 1 ,是为了形式上的统一,方便矩阵运算,

# 在第 0 列,插入一列,名称为"Onces",数值全为 1
pdData.insert(0, 'Onces', 1)
# X:训练数据   Y:目标值
# 将数据的panda表示形式转换为对进一步计算有用的数组
# 这个方法过时会有警告
orig_data = pdData.as_matrix()
cols = orig_data.shape[1]
X = orig_data[:, 0:cols - 1]
y = orig_data[:, cols - 1:cols]
# 初始化theta
theta = np.zeros([1, 3])

X.shape, y.shape, theta.shape

(3) 定义损失函数

损失函数是将对数似然函数,乘以一个负号。乘以负号是为了将求解梯度上升转换为求解梯度下降
在这里插入图片描述
这是整体的一个损失,但是,不同的样本量,总损失肯定是不同的,因此,为了确定一个统一标准,使用平均损失,即将总损失除以样本个数,
在这里插入图片描述

# 定义损失函数
def cost(X, y, theta):
    left = np.multiply(-y, np.log(model(X, theta)))
    right = np.multiply((1 - y), np.log(1 - model(X, theta)))
    return np.sum(left - right) / (len(X))

使用print输出下面结果,结果是0.69314718055994529

# 将数值带入计算损失值
cost(X, y, theta)

(4)梯度的计算与参数的更新

计算梯度的目的是寻找极值,确定损失函数如何进行优化,使损失函数的值越来越小。
在这里插入图片描述
参数的更新策略为:
在这里插入图片描述

我们需要通过迭代来计算梯度,然后,梯度的计算什么时候停止呢?这里有三种停止策略:

1、设置固定的迭代次数

2、设置损失函数的阈值,当达到一定阈值时,就停止迭代。

3、通过梯度的变化率来判断:设置前后两次梯度相差的阈值,如果小于该阈值,停止迭代。

相关代码如下:

# 计算梯度
# 计算每个参数的梯度方向
def gradient(X, y, theta):
    grad = np.zeros(theta.shape)
    error = (model(X, theta) - y).ravel()
    for j in range(len(theta.ravel())):  # for each parmeter
        term = np.multiply(error, X[:, j])
        grad[0, j] = np.sum(term) / len(X)
    return grad


# 设置三种策略
STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2


def stopCriterion(type, value, threshold):
    # 设定三种停止策略
    if type == STOP_ITER:
        return value > threshold
    elif type == STOP_COST:
        return abs(value[-1] - value[-2]) < threshold
    elif type == STOP_GRAD:
        # linalg=linear(线性)+algebra(代数),norm则表示范数
        return np.linalg.norm(value) < threshold


import numpy.random


# 洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols - 1]
    y = data[:, cols - 1:]
    return X, y


import time


def descent(data, theta, batchSize, stopType, thresh, alpha):
    #  梯度下降
    init_time = time.time()
    # 迭代次数
    i = 0
    # batch
    k = 0
    X, y = shuffleData(data)
    # 计算的梯度
    grad = np.zeros(theta.shape)
    # 损失值
    costs = [cost(X, y, theta)]

    while True:
        grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta)
        # 取batch数量个数据
        k += batchSize
        # 这个 n 是在运行的时候指定的,为样本的个数
        if k >= n:
            k = 0
            # 重新洗牌
            X, y = shuffleData(data)
        # 参数更新
        theta = theta - alpha * grad
        # 计算新的损失
        costs.append(cost(X, y, theta))
        i += 1

        if stopType == STOP_ITER:
            value = i
        elif stopType == STOP_COST:
            value = costs
        elif stopType == STOP_GRAD:
            value = grad
        if stopCriterion(stopType, value, thresh):
            break
    return theta, i - 1, costs, grad, time.time() - init_time


def runExpe(data, theta, batchSize, stopType, thresh, alpha):
    # import pdb; pdb.set_trace();
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    name = "Original" if (data[:, 1] > 2).sum() > 1 else "Scaled"
    name += " data - learning rate: {} - ".format(alpha)
    if batchSize == n:
        strDescType = "Gradient"
    elif batchSize == 1:
        strDescType = "Stochastic"
    else:
        strDescType = "Mini-batch ({})".format(batchSize)
    name += strDescType + " descent - Stop: "
    if stopType == STOP_ITER:
        strStop = "{} iterations".format(thresh)
    elif stopType == STOP_COST:
        strStop = "costs change < {}".format(thresh)
    else:
        strStop = "gradient norm < {}".format(thresh)
    name += strStop
    print("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
        name, theta, iter, costs[-1], dur))
    fig, ax = plt.subplots(figsize=(12, 4))
    ax.plot(np.arange(len(costs)), costs, 'r')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title(name.upper() + ' - Error vs. Iteration')
    return theta

这样,就可以运行结果了。运行的类型有很多种,首先,终止迭代的方式有三种,而选择样本的方式同样有三种:
(1)批量梯度下降,也就是一下子考虑所有的样本,这样的话,速度慢,但是容易得到最优解;
(2)随机梯度下降,每次只利用一个样本,这样的方式迭代速度很快,不过难以保证每次的迭代都是朝着收敛的方向;
(3)小批量梯度下降,即 mini-batch ,每次更新选择一小部分,比如 16个样本,32 个样本等等,这样的方式很实用,但应该先对数据进行洗牌,打乱顺序。

运行一下:

# 选择的梯度下降方法是基于所有样本的
# 当n值指定为10的时候,相当于整体对于梯度下降,为什么呢?因为我的数据样本就10个.
# 传进来的数据是按照迭代次数进行停止的,
# 指定迭代次数的参数是thresh=5000.学习率是alpha=0.000001.
n = 10
runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)
plt.show()

当n值指定为10的时候,相当于整体对于梯度下降,为什么呢?因为我的数据样本就10个.
传进来的数据是按照迭代次数进行停止的,指定迭代次数的参数是thresh=5000.学习率是alpha=0.000001.

运行结果:
在这里插入图片描述 在这里插入图片描述

如果采用随机梯度下降(每次只使用一个样本),或者小批量梯度下降(每次采用 mini-batch),会产生如下的效果——波动太大

# 设定阈值 1E-6, 差不多需要110 000次迭代
runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)
plt.show()
运行结果:

有至少两种解决方案:

(1)将学习率调小一点,情况肯定会有所改善

(2)对数据去均值化。将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1。

from sklearn import preprocessing as pp

scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])

最终的结果是:波动不再明显,并且收敛速度加快,最终获得的损失函数的值会更小。不再一一列举实验

4、精度判断

预测

# 设定阈值
def predict(X, theta):
    return [1 if x >= 0.5 else 0 for x in model(X, theta)]


scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
predictions = predict(scaled_X, theta)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print('accuracy = {0}%'.format(accuracy))

预测结果
在这里插入图片描述

这个结果是可以改善了,如果迭代的次数更多,这个精度会更高。


github源码和数据下载

本文参考文章:https://blog.csdn.net/dengheCSDN/article/details/79054091

  • 3
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值