Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector Note

Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector Note

先发一篇Note,因为Thinking要写的内容太多,代码和之前的有些内容还没深入学(需要元学习和经典目标识别框架的基础),所以可能要延时更新
默默奉劝一句,这篇论文意义不大,更多的是直接应用(其实就是一个数据集比较有亮点)

对于神经网络类的论文,我想从以下几个方面在把握住:

  • 问题的提出,该领域历史上都做了哪些努力,有哪些不足之处,作者提出了什么方法,想要解决哪个问题。
  • 神经网络的结构和激活函数
  • 神经网络的代价函数解读
  • 在上面这些过程中的一些我认为的或者作者认为的难点
  • 网络的训练与测试

问题的提出:

​ 因为传统的目标检测需要大量的label data进行训练,为了消除label data的大量labor,作者想解决few-shot detection问题。目前对于少样本分类有不少取得很好效果的研究,少样本目标检测也有一些研究,但是需要微调,因此不能直接用于应用新的类别。few-shot的主要挑战再与localization,因为检测的bb很容易丢掉没见过的目标,甚至出现在背景下的错误检测。

作者的目标:

​ 作者提出一种模型,能够在few-shot训练集下,无需调优和再训练就能用于检测新型目标。

作者采用的方法:

​ 我们的工作受到match network的启发。我们提出了一个通用的few-shot目标检测网络,该网络基于 Faster R-CNN framework框架学习图像对之间的匹配度量,该框架配备了我们新的attention RPN 和使用我们的 contrastive training策略训练的多关系检测器。

背景知识:

1、match network网络的原理?

2、RPN网络原理

最全综述 | 图像目标检测

3、什么是query set 和 test set?

​ N-way k-shot指N个类别,每个类别K个样本。

​ N-way k-shot 中的 N 和 k 是由 Testing data决定的,与 Training data 无关

小样本学习中的一些基本概念

4、fore-ground和back-ground的区别

​ 前景是你感兴趣的对象。背景却不是

5、meta learning综述学习

Link1

Link2

6、Faster RCNN

​ https://zhuanlan.zhihu.com/p/70759706

论文精华/核心:

  • attention RPN网络用于few-shot数据集
  • Multi-Relation Detector

问题

1、文中提出了无需重训练和调优,那如何添入新类呢?

2、文中提出的模型,对于近似类(细腻度方向)的分类和检测的效果如何?

3、文中所谓的无需调优和再训练的优势是怎么来的?

4、根据文中的框架,第一个shared network是Faster RCNN,这里有疑惑,具体是取哪些网络,更多的detail需要看代码才能直到,文中太省略了(废话一大堆,有用的没多少)。

3 FSOD A Highly-Diverse Few-Shot Object Detection Dataset

数据结构

​ 从有监督的大型数据集中中构建自己的数据集。不能直接用的原因看文中。这里构建数据集合并了细类,移除了不合适的图像(box和标签有问题)。通过与现有训练类别距离最大的类别来拆分数据集为训练集和测试集,比例为8:2。

数据分析

类别高度多样化

4 Our Methodology

4.1 Problem Definition

​ 任务是在查询中找到属于支持类别的所有目标对象,并用紧密的边界框标记它们。

4.2. Deep Attentioned Few-Shot Detection

​ weight shared network是指包含了RPN和detector的Faster R-CNN,通过这个框架来训练支持图特征和查询图特征之间的匹配关系。

4.2.1 Attention-Based Region Proposal Network

​ RPN的优势:在少样本目标检测中,RPN能够生成relevant box,从而利于后面的检测任务。具体来说,RPN不仅能识别目标和非目标还能过滤掉不属于支持集类中的负目标。

​ RPN缺点:如果没有支持图像的信息,RPN会在高分数的潜在目标中变得活跃,这会导致,后续的分类任务中,需要检测大量的不相关目标。

​ 为了解决这个问题,我们提出了Attention-Based RPN(图5)。

Q:

1、attention RPN作用是什么?

​ attention RPN网络计算了query和support的特征相似性,这个相似性能够用来生成proposal。

2、attention RPN相比较RPN来说,优势在哪?

​ 根据原文的意思,RPN需要支持图像的信息,而attention RPN只需要支持信息。所以这两个是否有不同还需要继续研究。

​ 后文进行实验补充,attention表现更好

3、attention RPN中生成G的过程具体是怎么样的,如何理解公式G

image-20201112144556023

​ 固定h,w,c,通过i,j上遍历来生成G,h+i-1<=H, w+j-1<=W,又因为 i,j<=S,则0<=h<H+1-S, 0<=w<W+1-S。G是整个x与 x相同大小的、左上角为i,j的Y框(s*s)求点乘和

​ 根据原文的意思,通过深度的方向(对所有深度进行相同操作),把当作kernel在query feature map Y中进行滑动操作。kernel是通过在支持特征映射上求平均值生成的。当s=1时,效果最好。体现了全局特征可以为对象分类提供良好的对象先验。

4.2.2 Multi-Relation Detector

​ RPN网络后面要通过一个detector来进行出列,为了重新评分proposal和类识别,提出了新的多关系检测器,用于有效地测量来自查询的建议盒和支持对象之间的相似性。

​ 检测器包括三个注意模块,分别是全局关系头,用于学习用于全局匹配的深度嵌入局部相关头,用于学习 support和query proposal之间的像素方向和深度方向的互相关patch关系头,用于学习用于patch匹配的深度非线性度量。三个匹配模块可以相互补充,产生更高的性能。

​ 通过loss 与[25]中网络联合训练 attention RPN

Q:为什么要引入关系头?有什么好处?

​ 为什么:为了对前面RPN生成的输出进行处理,能够使检测器具有很强的辨别能力来区分不同的类别,提出了一种新的多关系检测器来有效地测量来自query的proposal boxsupport 对象之间的相似性

​ 好处:文中做了一个实验,局部头表现得最好,最差得是batch头,当将任意两个结合得时候,比任意一个要好,当将所有三个关系头结合起来,达到了最好的表现。所以加入关系头,对于处理query的proposal boxsupport 对象之间的相似性是很常用的思路。

4.3. Two-way Contrastive Training Strategy

Q:

1、为什么要提出这个训练策略?有什么好处?

​ 通常是使用pair(s_c, q_c)来进行训练,但是为了能够识别不同种类的目标,引入a novel 2-way contrastive training strategy。

​ 通过实验可以看出 2-way5-shot表现比1-way要好很多,表示加入negative类能提升表现,而5-way表现却差了,作者认为在训练过程中只需要一个negative类即可。

### 回答1: "few-shot object detection with attention-rpn and multi-relation detector" 是一种使用注意力机制的少样本目标检测方法。它通过使用 Attention-RPN(Region Proposal Network)和 Multi-Relation Detector 来实现对目标的检测。 Attention-RPN 可以在提议区域中识别关键部位,而 Multi-Relation Detector 则可以在少量样本中识别目标并定位它们。这种方法在训练和测试时都需要少量样本,因此可以减少模型的训练时间和资源消耗。 ### 回答2: 随着人工智能技术的不断发展,目标检测的研究也得到了越来越多的关注。其中,Few-shot object detection with attention-rpn and multi-relation detector是目前在目标检测领域上的一个最新研究成果。那这个算法是什么呢? 针对目前目标检测领域中的一大难点——少样本学习,此研究提出了一种基于RPN(region proposal network)和注意力机制的多关系检测算法,使得模型只需使用少量的训练数据,就能在未见过的类别中达到较高的检测准确率。 具体来说,该算法通过在RPN中引入注意力交互模块来提供精细的检测区域,同时通过设计多组关系特征提取器,能够有效处理不同目标类别之间的相互关系。在训练阶段,该算法将训练数据集划分为meta-train和meta-test集合,然后在较小的meta-train集合中学习关系特征提取器和注意力交互模块,最后在meta-test集合的未知类别中进行目标检测。 综合以上基本思路,该算法通过引入注意力机制和多关系特征提取器来实现Few-shot object detection。该算法在目前的Few-shot目标检测基准测试数据集上进行了实验证明,实现了较高的检测准确率,在很大程度上解决了少样本学习的问题。未来,这个技术还需要进一步实践和推广,使得得到更广泛的使用。 ### 回答3: 本文介绍了一种基于注意力机制RPNAttention-RPN)和多关系检测器(Multi-Relation Detector)的小样本目标检测技术(Few-shot Object Detection)。该技术可以利用预训练的模型来辅助小样本检测任务,并可以适应新的目标类别。 本文中的Attention-RPN是一种针对小样本学习的改进版本,它可以通过选择性的关注训练数据中的重要区域来提高小样本的性能。同时,Attention-RPN还可以利用先前训练模型的知识来指导小样本的训练过程,从而提高检测结果的准确性。 而多关系检测器则是一种可以检测目标之间关系的模型。通过学习目标之间的关系,可以更好地理解图像中的场景,并且可以更准确地定位和分类目标。本文中的多关系检测器采用了一种新的模型结构,其中用到了一种称为Transformers的自注意力机制,它可以自适应地聚焦于任务中的关键区域,从而提高检测性能。 在实验中,本文采用了COCO、VOC和miniImagenet等数据集进行测试。结果表明,本文所提出的Few-shot Object Detection技术可以在少量样本的情况下取得好的检测结果。同时,Attention-RPNMulti-Relation Detector也能分别提高小样本和多样本的检测性能,证明它们是十分有效的模型改进方式。 综上所述,本文提出了一种新的小样本目标检测技术,并通过Attention-RPNMulti-Relation Detector的改进来提高检测性能。该技术对于具有高效率和精度要求的目标检测任务具有十分重要的意义,可能对未来的计算机视觉研究和工业应用产生积极的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值