摘要
传统的目标检测方法通常需要大量的训练数据,并且准备这样高质量的训练数据是劳动密集型的(工作)。在本文中,我们提出了少量样本的目标检测网络,目的是检测只有几个训练实例的未见过的类别对象。我们的方法的核心是注意力RPN和多关系模块,充分利用少量训练样本和测试集之间的相似度来检测新对象,同时抑制背景中的错误检测。为了训练我们的网络,我们已经准备了一个新的数据集,它包含1000类具有高质量注释的不同对象。据我们所知,这也是第一个数据集专门设计用于少样本目标检测。一旦我们的网络被训练,我们可以应用对象检测为未见过的类,而无需进一步的训练或微调。我们的方法是通用的,并且具有广泛的应用范围。我们证明了我们的方法在不同的数据集上的定性和定量的有效性。
创新性
- 我们提出了一种通用的少样本物体检测模型,该模型可用于检测新颖物体而无需重新训练和微调。借助我们精心设计的对比训练策略,RPN上的注意力模块和检测器,我们的方法在多个网络阶段利用权重共享网络中的对象对之间的匹配关系。这使我们的模型可以对不需要精细训练或无需进一步网络适应的新颖类别的对象执行在线检测。实验表明,我们的模型可以在建议质量得到显着提高的早期阶段中从关注模块以及多重关系检测器模块中受益,该模型可以抑制并在令人迷惑的背景中滤除错误检测。我们的模型在少样本设置下就在ImageNet Detection数据集和MS COCO数据集上实现了最新的性能。
- 是创建了一个大型的带注释的数据集,该数据集包含1000个类别,每个类别仅包含几个示例。总体而言,与现有的大规模数据集(例如,coco[13]。据我们所知,这是具有空前数量的对象类别(1000)的少样本目标检测数据集之一。使用该数据集,即使没有任何微调,我们的模型也可以在不同的数据集上实现更好的性能。
思路启发
少量support的情况,检测全部的属于target目标范畴的前景
网络结构
我们提出了一种新颖的注意力网络,它可以学习支持集与RPN模块和检测器上的查询之间的一般匹配关系。
几点思考
- 论文提出了新的少样本目标检测算法,创新点包括Attention-RPN、多关系检测器以及对比训练策略,另外还构建了包含1000类的少样本检测数据集FSOD,在FSOD上训练得到的论文模型能够直接迁移到新类别的检测中,不需要fine-tune
参考资料
觉得有用可以关注我的公众号CV伴读社