链接:http://codeforces.com/gym/101806/problem/P
题意:类似于俄罗斯方块,只有1*2的方块(横着或竖着)从上面往下掉。有k中颜色,当同一种颜色连起来的格子数目大于等于4时,会消掉。给出一个结果,求一种构造方法。(一开始是空的)
思路:在结果中,数量为偶数的列,可以放数目/2个竖的。对于奇数列,除了最上面那个,下面的和偶数列同样的操作,如果最上面的颜色为a,那么就放竖的ba、bb、bb,这里要保证a和b不同。
分析:可以用的块最多是250个。最坏情况2020每行都是最多的奇数列,那么有最上面部分203,剩余部分18/2*20 即最多要240个块,满足要求。
注意点:放哪一行需要一定的顺序,先奇数列后偶数列,奇数列中先矮后高。这样可以避免一些列先放好后被别的列消掉。下面给出一个样例:
4 4 3
0 3 2 0
0 3 2 0
0 1 3 0
2 1 1 2
参考代码:
#include<bits/stdc++.h>
using namespace std;
struct node
{
int tp,lie,color1,color2;
node(){}
node(int tp,int lie,int color1,int color2)
{
this->tp=tp;
this->lie=lie;
this->color1=color1;
this->color2=color2;
}
};
queue<node>q;
struct node2{
int xb,num;
node2(){}
node2(int xb,int num)
{
this->xb=xb;
this->num=num;
}
bool operator <(const node2 &a)const
{
return num<a.num;
}
};
multiset<node2>qq;
int mp[25][25];
int num[25];
int main()
{
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
for(int i=1;i<=l;i++)
for(int j=1;j<=r;j++){
scanf("%d",&mp[i][j]);
if(mp[i][j]!=0)num[j]++;
}
for(int i=1;i<=l;i++)
{
if(num[i]%2)
qq.insert(node2(i,num[i]));
}
for(set<node2>::iterator it= qq.begin();it!=qq.end();it++)
{
node2 now =*it;
int i=now.xb;
int x=num[i]/2;
int pos=l;
for(int j=1;j<=x;j++)
{
q.push(node(1,i,mp[pos][i],mp[pos-1][i]));
pos-=2;
}
if(mp[pos][i]==k)
{
q.push(node(1,i,mp[pos][i],1));
q.push(node(1,i,1,1));
q.push(node(1,i,1,1));
}
else
{
q.push(node(1,i,mp[pos][i],k));
q.push(node(1,i,k,k));
q.push(node(1,i,k,k));
}
}
for(int i=1;i<=l;i++)
{
if(num[i]%2==0)
{
int x=num[i]/2;
int pos=l;
for(int j=1;j<=x;j++)
{
q.push(node(1,i,mp[pos][i],mp[pos-1][i]));
pos-=2;
}
}
}
printf("%d\n",q.size());
while(!q.empty())
{
node now=q.front();
q.pop();
printf("%d %d %d %d\n",now.tp,now.lie,now.color2,now.color1);
}
return 0;
}