GYM 101806 T 总结

GYM 101806 T 总结

这是一个经典的问题。

首先我们发现要满足 ∑ j = 1 i − 1 d p j ≤ l p i \sum _{j=1}^{i-1} d_{p_j}\leq l_{p_i} j=1i1dpjlpi,也就是说要使得 ∑ j = 1 i d p j ≤ l p i + d p i \sum _{j=1}^i d_{p_j}\leq l_{p_i}+d_{p_i} j=1idpjlpi+dpi

s i = l i + d i s_i=l_i+d_i si=li+di

显而易见,我们应该按照 s i s_i si升序放气球。

这样就可以想出一个非常容易的 n 2 n^2 n2dp。

但是怎么加速到 O ( n × log ⁡ n ) O(n\times \log n) O(n×logn)呢?

其实我们可以从前往后考虑,维护选的气球的集合。假设当前考虑第i个。若可以加入i就直接加入i,否则i可以替换前面的任意一个,显然把 d j d_j dj最大的替换掉。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值