GYM 101806 T 总结
这是一个经典的问题。
首先我们发现要满足 ∑ j = 1 i − 1 d p j ≤ l p i \sum _{j=1}^{i-1} d_{p_j}\leq l_{p_i} ∑j=1i−1dpj≤lpi,也就是说要使得 ∑ j = 1 i d p j ≤ l p i + d p i \sum _{j=1}^i d_{p_j}\leq l_{p_i}+d_{p_i} ∑j=1idpj≤lpi+dpi。
设 s i = l i + d i s_i=l_i+d_i si=li+di。
显而易见,我们应该按照 s i s_i si升序放气球。
这样就可以想出一个非常容易的 n 2 n^2 n2dp。
但是怎么加速到 O ( n × log n ) O(n\times \log n) O(n×logn)呢?
其实我们可以从前往后考虑,维护选的气球的集合。假设当前考虑第i个。若可以加入i就直接加入i,否则i可以替换前面的任意一个,显然把 d j d_j dj最大的替换掉。