GYM 101806 T 总结

GYM 101806 T 总结

这是一个经典的问题。

首先我们发现要满足 ∑ j = 1 i − 1 d p j ≤ l p i \sum _{j=1}^{i-1} d_{p_j}\leq l_{p_i} j=1i1dpjlpi,也就是说要使得 ∑ j = 1 i d p j ≤ l p i + d p i \sum _{j=1}^i d_{p_j}\leq l_{p_i}+d_{p_i} j=1idpjlpi+dpi

s i = l i + d i s_i=l_i+d_i si=li+di

显而易见,我们应该按照 s i s_i si升序放气球。

这样就可以想出一个非常容易的 n 2 n^2 n2dp。

但是怎么加速到 O ( n × log ⁡ n ) O(n\times \log n) O(n×logn)呢?

其实我们可以从前往后考虑,维护选的气球的集合。假设当前考虑第i个。若可以加入i就直接加入i,否则i可以替换前面的任意一个,显然把 d j d_j dj最大的替换掉。

<think>嗯,用户问的是如何在Gym中自定义或调整与跑步相关的环境设置。首先,我需要回忆一下Gym的基本结构。Gym的环境通常是用Python写的,所以用户可能需要修改现有的环境或者创建一个新的。 根据引用3,强化学习需要与环境交互,所以环境的设置直接影响训练效果。跑步相关的环境可能涉及到运动控制、动力学模型,可能需要物理引擎的支持,比如MuJoCo,如引用1提到的,MuJoCo用于物理模拟,适合机器人控制和运动控制的环境。 用户可能已经知道Gym中有一些预定义的环境,比如MuJoCo的Humanoid或者Ant,这些可能与跑步相关。但用户想自定义,比如调整奖励函数、状态空间或者动作空间。比如,修改奖励函数,让智能体跑得更快或者更稳。 接下来,步骤应该是:首先确认是否需要修改现有环境还是新建。如果要调整现有环境,可以继承原来的类并重写相关方法。例如,修改奖励计算函数,或者调整观测空间。如果要新建环境,需要注册到Gym中,定义动作和观测空间,实现reset和step方法。 另外,动力学参数可能需要调整,比如摩擦系数、质量等,这涉及到修改模型的XML文件,如果环境是基于MuJoCo的话。引用1提到MuJoCo用于创建精确的物理环境,所以用户可能需要编辑这些文件。 然后,测试环境是否正常运行,确保状态和奖励的计算正确。可能需要使用现有的RL算法来测试,比如PPO或DQN,看智能体是否能学习到跑步的策略。 可能遇到的问题包括:环境没有正确注册,奖励函数设计不合理导致训练困难,或者物理参数调整不当导致动作失效。需要逐步调试,比如先检查环境是否正常加载,再验证奖励函数是否符合预期。 用户可能还需要参考Gym的官方文档,了解如何正确注册自定义环境,以及如何继承和重写基类的方法。另外,引用2中提到的一些SLAM方法可能不直接相关,但动态环境的处理或许对跑步环境的动态障碍物有参考价值,不过用户的问题中没有提到这点,可能暂时不需要考虑。 总结步骤应该是:1. 确定修改还是新建环境;2. 继承原有环境类,重写方法;3. 调整奖励、状态、动作空间;4. 修改物理参数(如用MuJoCo时);5. 注册环境并测试;6. 结合RL算法训练。 可能还需要注意版本兼容性,比如Gym和MuJoCo的版本是否匹配,以及依赖库的安装。此外,奖励函数的设计是关键,需要确保它能够有效引导智能体学习跑步,比如结合速度、稳定性、能量消耗等因素。</think>在Gym中自定义或调整跑步相关环境设置,可通过以下步骤实现: ### 一、环境继承与修改 1. 继承现有跑步环境类(如`Humanoid-v4`): ```python from gym.envs.mujoco.humanoid_v4 import HumanoidEnv class CustomRunEnv(HumanoidEnv): def __init__(self): super().__init__() # 调整观测空间维度 self.observation_space = spaces.Box(...) def step(self, action): obs = super().step(action) # 自定义奖励函数 reward = self._custom_reward(obs) return obs, reward, done, info ``` ### 二、关键参数调整 1. **动力学参数调整**(需修改MuJoCo模型XML文件): ```xml <mujoco> <option timestep="0.002"/> <!-- 控制仿真精度 --> <body name="torso" pos="0 0 1.2"> <inertial mass="10" diaginertia="1 1 1"/> <!-- 调整躯干质量 --> </body> </mujoco> ``` *注:MuJoCo的精确物理模拟能力可支持复杂运动控制建模[^1]* ### 三、奖励函数设计 推荐采用组合奖励函数: $$R_t = \alpha \cdot v_x - \beta \cdot \theta^2 - \gamma \cdot \tau^T\tau$$ 其中$v_x$为前进速度,$\theta$为躯干俯仰角,$\tau$为关节力矩,系数推荐值$\alpha=1.0, \beta=0.1, \gamma=0.05$ ### 四、环境注册与验证 ```python from gym.envs.registration import register register( id='CustomRun-v0', entry_point='env_module:CustomRunEnv', max_episode_steps=1000 ) # 验证环境 env = gym.make('CustomRun-v0') print(env.observation_space) # 应显示调整后的维度 ``` ### 五、训练建议 使用PPO算法配合以下超参数: ```python from stable_baselines3 import PPO model = PPO( "MlpPolicy", env, learning_rate=3e-4, n_steps=2048, batch_size=64, gamma=0.99 ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值