风速预测(四)基于Pytorch的EMD-Transformer模型

目录

前言

1 风速数据EMD分解与可视化

1.1 导入数据

1.2 EMD分解

2 数据集制作与预处理

2.1 先划分数据集,按照8:2划分训练集和测试集

2.2 设置滑动窗口大小为7,制作数据集

3 基于Pytorch的EMD-Transformer模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch

3.2 定义EMD-Transformer预测模型

3.3 定义模型参数

3.4 模型训练

3.5 结果可视化


  往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客

风速预测(一)数据集介绍和预处理-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

风速预测(七)VMD-CNN-BiLSTM预测模型-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM+ ARIMA)-CSDN博客

 CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客

多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客

多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(四)Transformer-BiLSTM风速预测模型-CSDN博客

多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客

多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型-CSDN博客

多特征变量序列预测(九)基于麻雀优化算法的CEEMDAN-SSA-BiGRU-Attention预测模型-CSDN博客

多特征变量序列预测(10)基于麻雀优化算法的CEEMDAN-SSA-Transformer-BiLSTM预测模型-CSDN博客

超强预测算法:XGBoost预测模型-CSDN博客

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客

基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客

前言

本文基于前期介绍的风速数据(文末附数据集),先经过经验模态EMD分解,然后通过数据预处理,制作和加载数据集与标签,最后通过Pytorch实现EMD-Transformer模型对风速数据的预测。风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理-CSDN博客

1 风速数据EMD分解与可视化

1.1 导入数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

# 读取已处理的 CSV 文件
df = pd.read_csv('wind_speed.csv' )
# 取风速数据
winddata = df['Wind Speed (km/h)'].tolist()
winddata = np.array(winddata) # 转换为numpy
# 可视化
plt.figure(figsize=(15,5), dpi=100)
plt.grid(True)
plt.plot(winddata, color='green')
plt.show()

1.2 EMD分解

from PyEMD import EMD

# 创建 EMD 对象
emd = EMD()
# 对信号进行经验模态分解
IMFs = emd(winddata)

# 可视化
plt.figure(figsize=(20,15))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(winddata, 'r')
plt.title("原始信号")

for num, imf in enumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(imf)
    plt.title("IMF "+str(num+1), fontsize=10)
# 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.8, wspace=0.2)
plt.show()

2 数据集制作与预处理

2.1 先划分数据集,按照8:2划分训练集和测试集

2.2 设置滑动窗口大小为7,制作数据集

3 基于Pytorch的EMD-Transformer模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_set = load('train_set')
    train_label = load('train_label')
    # 测试集
    test_set = load('test_set')
    test_label = load('test_label')

    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_set, train_label),
                                   batch_size=batch_size, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_set, test_label),
                                  batch_size=batch_size, num_workers=workers, drop_last=True)
    return train_loader, test_loader

batch_size = 64
# 加载数据
train_loader, test_loader = dataloader(batch_size)

3.2 定义EMD-Transformer预测模型

注意:输入风速数据形状为 [64, 10, 7], batch_size=64,  维度10维代表10个分量,7代表序列长度(滑动窗口取值)。

3.3 定义模型参数

# 定义模型参数
batch_size = 64
input_len = 7     # 输入序列长度为7 (窗口值)
input_dim = 10    # 输入维度为10个分量
hidden_dim = 100  # Transformer隐层维度
num_layers = 4   # 编码器层数
num_heads = 2   # 多头注意力头数
output_size = 1 # 单步输出

model = EMDTransformerModel(batch_size, input_len, input_dim, hidden_dim, num_layers, num_heads, output_size=1)  

# 定义损失函数和优化函数 
model = model.to(device)
loss_function = nn.MSELoss()  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3.4 模型训练

训练结果

采用两个评价指标:MSE 与 MAE 对模型训练进行评价,100个epoch,MSE 为0.01627,MAE  为 0.0005549,EMD-Transformer预测效果良好,适当调整模型参数,还可以进一步提高模型预测表现。EMD-Transformer参数量不到LSTM模型的十分之一,效果相近,可见EMD-Transformer性能的优越性。

注意调整参数:

  • 可以适当增加Transformer堆叠编码器层数和隐藏层的维度,微调学习率;

  • 调整多头注意力头数,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

3.5 结果可视化

代码、数据如下:

对数据集和代码感兴趣的,可以关注最后一行

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
#代码和数据集:https://mbd.pub/o/bread/ZZiUmZ1s

PyTorch是一个开源的深度学习框架,可以用来构建神经网络模型。TCN(Temporal Convolutional Network)是一种用于时间序列预测的神经网络结构,能够捕捉时间序列中的长期依赖关系。Transformer是另一种常用的神经网络结构,通常用于自然语言处理领域,但也适用于时间序列预测任务。 要使用PyTorch实现TCN-Transformer的时间序列预测,首先需要导入PyTorch库。然后可以定义一个包含TCN和Transformer层的神经网络模型。TCN可以用来提取时间序列中的特征,而Transformer可以捕捉序列数据之间的关系。 在构建神经网络模型之后,接下来需要准备时间序列数据集。可以使用PyTorch的Dataset和DataLoader类来加载和处理时间序列数据。通常需要将数据划分为训练集和测试集,以便在训练模型时进行验证和评估。 训练神经网络模型时,可以使用PyTorch的优化器和损失函数来最小化预测值与真实值之间的误差。可以选择适当的学习率和训练迭代次数,以确保模型收敛并取得良好的预测效果。 最后,可以使用训练好的TCN-Transformer模型进行时间序列预测。将待预测的时间序列输入到模型中,即可获得对未来趋势的预测结果。通过评估预测结果与实际观测值的差异,可以评估模型的性能和准确度。 总之,使用PyTorch实现TCN-Transformer的时间序列表预测需要构建神经网络模型、处理数据集、训练模型并进行预测,通过这些步骤可以实现对时间序列数据的准确预测
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

建模先锋

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值