focalloss,diceloss 知识点总结

一   focalloss

1.什么是focalloss,用来干嘛

Focal loss最早是 He et al 在论文 Focal Loss for Dense Object Detection 中实现的。

例如在目标检测中损失函数Binary Cross Entropy loss,这种训练目标要求模型 对自己的预测真的很有信心。而Focal Loss所做的是,它使模型可以更"放松"地预测事物,而无需80-100%确信此对象是“某物”。简而言之,它给模型提供了更多的自由,可以在进行预测时承担一些风险。这在处理高度不平衡的数据集时尤其重要,因为在某些情况下(例如癌症检测),即使预测结果为假阳性也可接受,确实需要模型承担风险并尽量进行预测。

因此,Focal loss在样本不平衡的情况下特别有用。特别是在“对象检测”的情况下,大多数像素通常都是背景,图像中只有很少数的像素具有我们感兴趣的对象。

                             

该损失函数是一个动态缩放的交叉熵损失,当正确类别的置信度增加时,比例因子衰减为零,见图。直观地说,这个比例因子可以在训练过程中自动降低简单示例的权重,并快速将模型集中到难样本上。从图像中可以看出,当模型预测为真实标签的概率为0.6左右时,交叉熵损失仍在0.5左右。因此,为了在训练过程中减少损失,我们的模型将必须以更高的概率来预测到真实标签。换句话说,交叉熵损失要求模型对自己的预测非常有信心。但这也同样会给模型表现带来负面影响。深度学习模型会变得过度自信,泛化能力下降。

从比较Focal loss与CrossEntropy的图表可以看出,当使用γ> 1的Focal Loss可以减少“分类得好的样本”或者说“模型预测正确概率大”的样本的训练损失,而对于“难以分类的示例”,比如预测概率小于0.5的,则不会减小太多损失。因此,在数据类别不平衡的情况下,会让模型的注意力放在稀少的类别上,因为这些类别的样本见过的少,比较难分。

2. 原理

以下引自原论文:

焦点损失旨在解决单级目标检测场景在训练期间前景类和背景类之间存在极端不平衡(例如,1:1000)的问题。我们引入了从二元分类的交叉熵(CE)损失开始的焦点损失
在这里插入图片描述

其中y∈{±1}指定了基本真值类,p∈[0,1]是该类的模型估计概率。为了便于标注,我们将pt定义为:在这里插入图片描述
并重新写成CE(p, y) = CE(pt) = −log(pt).
CE损耗可以看作图1中的蓝色(顶部)曲线。这一损失的一个显著特征是,即使是那些容易分类的例子(pt>0.5),也可以很容易地从图中看出并损失较大。在大量简单的例子中进行总结时,这些小的损失值就会覆盖稀有类。

解决类不平衡的一种常见方法是为类1引入权重因子α∈[0,1],为类−1引入1−α。在实践中,α可以通过逆类频率来设置,也可以作为一个超参数通过交叉验证来设置。为了便于注释,我们将α定义为pt的定义。我们将α-平衡CE损耗写为:在这里插入图片描述

这个损耗是CE的一个简单扩展,我们将其作为我们提出的焦点损耗的实验基线。

 ---------------------------------------------------------------------------------------------------------------------------

focalloss定义

对比crossentropy,其中多了两部分 

(原文:类间不均衡较大会导致,交叉熵损失在训练的时候收到影响。易分类的样本的分类错误的损失占了整体损失的绝大部分,并主导梯度。尽管α平衡了正面/负面例子的重要性,但它并未区分简单/困难例子。虽然有上方的因子α,但是在大多数情况下往往是不够的,所以主要就取决于γ)

γ控制曲线的形状. γ的值越大, 好分类样本的loss就越小, 我们就可以把模型的注意力投向那些难分类的样本. 一个大的 γ让获得小loss的样本范围扩大了.

二 diceloss

1 dice coefficient定义

dice系数是一种集合相似度度量函数,通常用于计算两个样本的相似度:

                                          范围为【0,1】

 相应的diceloss为

                                        

 预测的分割图的 dice 系数计算,首先将 |X⋂Y| 近似为预测图与 GT 分割图之间的点乘,并将点乘的元素结果相加:

   

 关于 |X| 和 |Y| ,可采用直接简单的元素相加;也有采用取元素平方求和的做法。

2 适用情况

 dice loss 比较适用于样本极度不均的情况,一般的情况下,使用 dice loss 会对反向传播造成不利的影响,容易使训练变得不稳定.

直接采用 dice-coefficient 或者 IoU 作为损失函数的原因,是因为分割的真实目标就是最大化 dice-coefficient 和 IoU 度量. 而交叉熵仅是一种代理形式,利用其在 BP 中易于最大化优化的特点.

另外,Dice-coefficient 对于类别不均衡问题,效果可能更优. 然而,类别不均衡往往可以通过简单的对于每一个类别赋予不同的 loss 因子,以使得网络能够针对性的处理某个类别出现比较频繁的情况. 因此,对于 Dice-coefficient 是否真的适用于类别不均衡场景,还有待探讨.

 

 

 

 

 

<think>嗯,用户想了解如何设计自定义的损失函数,特别是方法示例。我需要先整理一下已有的信息。根据提供的引用内容,Keras、TensorFlowPyTorch都有不同的实现方式。用户可能是在做机器学习项目,遇到了需要特定损失函数的情况,比如处理类别不平衡或者特定的优化目标。 首先,要明确设计损失函数的步骤。可能需要从理论出发,考虑数学表达式,然后转化为代码。用户可能需要知道不同框架下的实现差异,比如Keras需要封装成函数,而PyTorch需要继承nn.Module。同时,用户可能关心如何确保梯度正确计算,避免常见的错误。 引用中提到,在PyTorch中,自定义损失函数需要继承nn.Module,并实现forward方法,确保返回带梯度的张量。而Keras则需要使用backend函数来处理张量操作。这可能是一个关键点,用户需要注意不同框架的语法差异。 另外,用户可能对实际应用场景感兴趣,比如处理不平衡数据时的加权损失,或者多任务学习中的组合损失。需要给出具体的例子,比如Focal Loss或者自定义的加权MSE,这样用户能更好地理解如何应用。 还要注意检查代码示例的正确性,比如在PyTorch中使用nn.Parameter来定义可学习的权重,或者确保在Keras中正确使用K.mean()。用户可能会遇到问题,比如忘记在PyTorch中调用super().__init__(),或者没有正确处理张量的维度,这些都需要在回答中提醒。 最后,用户可能需要知道如何调试自定义损失函数,比如检查梯度是否存在,或者损失值是否合理。引用中提到的示例代码可以作为参考,但需要确保示例简洁明了,避免复杂化。 总结下来,回答的结构应该是先介绍设计方法,再分框架给出步骤示例,最后讨论应用场景注意事项。需要引用提供的资料来支持每个步骤,确保回答的可靠性。同时,生成的相关问题要引导用户深入探索,比如性能分析、优化方法或实际应用。</think>### 自定义损失函数设计方法及示例 #### 一、设计自定义损失函数的方法 1. **数学定义** 根据任务需求定义损失函数的数学表达式,例如: - 分类任务中处理类别不平衡的加权交叉熵: $$L = -\frac{1}{N} \sum_{i=1}^N w_{y_i} \cdot \left( y_i \log(p_i) + (1-y_i)\log(1-p_i) \right)$$ 其中$w_{y_i}$为类别权重[^3]。 - 目标检测中结合定位分类的复合损失: $$L = \lambda_{cls} L_{cls} + \lambda_{reg} L_{reg}$$ 2. **框架适配** 根据深度学习框架特性实现: - **PyTorch**:继承`nn.Module`类,必须实现`forward`方法并返回带梯度的张量[^4]。 - **Keras/TensorFlow**:使用后端计算函数(如`K.mean`, `K.sum`)保证梯度传递[^1]。 3. **梯度验证** 通过`loss.backward()`检查参数梯度是否存在,使用`torch.autograd.gradcheck`验证梯度计算正确性[^4]。 --- #### 二、框架实现示例 ##### 1. PyTorch 实现加权MSE ```python import torch.nn as nn class WeightedMSELoss(nn.Module): def __init__(self, weight_positive=2.0): super().__init__() self.weight = nn.Parameter(torch.tensor(weight_positive)) # 可学习权重 def forward(self, pred, target): diff = pred - target loss = torch.where(target > 0, self.weight * diff**2, diff**2) # 正样本加权 return torch.mean(loss) ``` ##### 2. Keras 实现Focal Loss ```python from keras import backend as K def focal_loss(gamma=2., alpha=0.25): def _focal_loss(y_true, y_pred): epsilon = K.epsilon() y_pred = K.clip(y_pred, epsilon, 1. - epsilon) cross_entropy = -y_true * K.log(y_pred) loss = alpha * K.pow(1 - y_pred, gamma) * cross_entropy return K.sum(loss, axis=-1) return _focal_loss ``` ##### 3. 多任务联合损失(PyTorch) ```python class MultiTaskLoss(nn.Module): def __init__(self, task_weights): super().__init__() self.weights = nn.Parameter(torch.tensor(task_weights)) def forward(self, losses): weighted_loss = torch.sum(self.weights * torch.stack(losses)) return weighted_loss ``` --- #### 三、关键注意事项 1. **梯度保持** PyTorch实现中必须使用框架内建运算符,避免使用`numpy`操作中断梯度。 2. **动态参数** 若需自动学习损失函数参数(如权重),需定义为`nn.Parameter`[^5]。 3. **数值稳定性** 对概率计算添加极小值$\epsilon$防止log(0)错误: ```python y_pred = torch.clamp(y_pred, 1e-7, 1-1e-7) # PyTorch y_pred = K.clip(y_pred, K.epsilon(), 1-K.epsilon()) # Keras ``` --- #### 四、典型应用场景 1. **类别不平衡问题** 医学图像分割中使用Dice Loss: $$Dice = \frac{2|X \cap Y|}{|X| + |Y|}$$ 实现时需处理平滑项防止除零错误。 2. **知识蒸馏** 教师模型输出作为软目标: $$L = \alpha \cdot L_{CE}(y, p) + (1-\alpha) \cdot L_{KL}(p_{teacher}, p_{student})$$ 需通过`torch.nn.KLDivLoss`实现[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值