Discovering Gold 最基础期望dp

                                                                                     Discovering Gold

You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold.

Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the Nth position you stop your journey. Now you are given the information about the cave, you have to find out the expected number of gold you can collect using the given procedure.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the dimension of the cave. The next line contains N space separated integers. The ith integer of this line denotes the amount of gold you will get if you come to the ith cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000.

Output

For each case, print the case number and the expected number of gold you will collect. Errors less than 10-6 will be ignored.

Sample Input

3

 

1

101

 

2

10 3

 

3

3 6 9

Sample Output

Case 1: 101.0000000000

Case 2: 13.000

Case 3: 15

vjudge传送门

题意:给n个洞,每个洞中放有一定数量的黄金,起点是第一个洞,每次移动通过扔6面的筛子确定跳跃几格,跳到哪个洞了就会将这个洞中所有的黄金拿走。问调到最后一格的得到黄金数的期望是多少。

题解:最基础的期望题。一开b始的想法是dp[i]表示的是从第一个洞跳到第i个洞的期望值。无法解决,一直wa,不太知道原因,没办法只能换一种想法,dp[i]表示从第i个洞开始跳到最后的期望值。倒着写一遍就过了。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
double dp[300];
int main(){
    int t;
    scanf("%d",&t);
    for(int o=1; o<=t; o++){
        int n;
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
            scanf("%lf",&dp[i]);
        int k;
        for(int i=n; i>=1; i--){
            if(i>=n-6+1) k=n-i;
            else k=6;
            for(int j=i+1; j<=i+k; j++){
                dp[i] += 1.0/k*dp[j];
            }
        }
        printf("Case %d: %f\n",o,dp[1]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值