线性表
线性表的逻辑结构
1.定义
- 线性表(Linear_List)是零个或多个数据元素的有限序列,
- 通常可表示成 : a 1 , a 2 , . . . , a n ( n > = 0 ) a_1,a_2,...,a_n(n>=0) a1,a2,...,an(n>=0)
- n:表的
长度
; a i a_i ai是 a i + 1 a_{i+1} ai+1的前驱
; a i a_i ai是 a i + 1 a_{i+1} ai+1的后继
;i 称为 a i a_i ai的索引
。
2.结构类型
- 线性表的逻辑结构是线性结构
- 基本特征 : 若至少含有一个节点,
- 则除起始节点没有直接前驱外,其他节点有且只有一个前驱
- 除终端节点没有直接后继外,其他节点有且仅有一个直接后继
线性表的基本运算
Initiate(&L):初始化操作, 设定一个空的线性表
Length(L):求长度, 其结果是线性表L的长度
Get(L,i):读表元,
若1<=i<=Length(L),其结果是线性表L的第i个数据元素;否则,其结果为一特殊值.
Locate(L,x):定位运算,
若L中存在一个或多个与x值相等的元素,则运算结果为这些元素序号的最小值,否则运算结果为0
Insert(L,i,x):插入运算,
其作用是在线性表L的第i个位置上(即原第i个元素之前)增加一个以x为值的新元素,使L由(
a
1
,
a
2
,
.
.
.
,
a
i
,
a
i
+
1
,
.
.
.
,
a
n
a_1,a_2,...,a_i,a_{i+1},...,a_n
a1,a2,...,ai,ai+1,...,an)变为(
a
1
,
a
2
,
.
.
.
,
x
,
a
i
,
a
i
+
1
,
.
.
.
,
a
n
a_1,a_2,...,x,a_i,a_{i+1},...,a_n
a1,a2,...,x,ai,ai+1,...,an)
Delete(L,i):删除运算,
其作用是删除线性表L的第i个数据元素
a
i
a_i
ai,使L由(
a
1
,
a
2
,
.
.
.
,
a
i
,
a
i
+
1
,
.
.
.
,
a
n
a_1,a_2,...,a_i,a_{i+1},...,a_n
a1,a2,...,ai,ai+1,...,an)变为(
a
1
,
a
2
,
.
.
.
,
a
i
−
1
,
a
i
+
1
,
.
.
.
,
a
n
a_1,a_2,...,a_{i-1},a_{i+1},...,a_n
a1,a2,...,ai−1,ai+1,...,an),i的合法取值:1~n.
线性表的顺序存储结构
-
顺序存储分配,即用一组连续的存储单元一次存储线性表的各个元素
-
若线性表的每个元素占用C个连续的存储单元,则表中第i个元素的寻址公式为:
-
Local( a i a_i ai)=Loc( a 1 a_1 a1)+(i-1)*C (1<=i<=n)
用C语言定义线性表的顺序存储结构如下:
typedef ElemType Linear_list[n];
其中ElemType数据类型是为了描述的统一而自定的
a 1 a_1 a1在线性表中的序号为1,其对应的数组的下标为0;
a i a_i ai在线性表中的序号为i,其对应的数组的下标为i-1;
线性表基本运算的实现(顺序存储分配的情况下)
线性表的插入运算 Insert (Linear_list &L,int i,ElemType x,int &n)
void Insert(Linear_list &L, int i, ElemType x, int &n)
/*
*在长度为 n 的线性表的第 i 个元素之前插入一个元素 x,
* L 为存储线性表的向量,且假定其上界大于n
*/
{
if(i>=0 && i<=n)
{
for(int j=n-1;j>=i-1)
L[j+1]=L[j];
L[i-1]=x;
n=n+1;
}
else error("插入的位置非法");
}
线性表中数据元素的删除 Delete(Linear_list &L,int i,int &n)
void Delete(Linear_list &L, int i, int &n)
{
if(i>=0 && i<=n)
{
for(int j=i;j++;j<n)
L[j-1]=L[j];
n=n-1;
}
else error("非法删除");
}
定位运算 Locate (Linear_list &L,ElemType x,int &n)
int Locate(Linear_list &L, int &n)
{
int i=0;
while(i<n && L[i]!=x)
i++;
if(i>=n)
return -1;
else
return i;
}
线性表的优缺点
优点:
- 无需为表示节点间的逻辑关系而增加额外的存储空间(因为逻辑上相邻的元素其存储位置也是相邻的)
- 可方便地随机存取表中的任一元素
缺点:
- 插入或删除运算不方便,除表尾的位置外,在表的其他位置上进行插入或删除操作都必须移动大量的元素,其效率较低.
- 由于顺序表要求占用连续的存储空间,存储分配只能与先进行静态分配.因此当表长变化较大时,难以确定合适的存储规模.若按可能达到的最大长度预先分配表空间,则可能造成一部分空间长期闲置而得不到充分利用;若事先对表长估计不足,则插入操作可能使表长超过预先分配的空间而造成溢出
栈
1.栈的基本概念
定义
限定仅在表尾进行插入或删除操作的线性表
通常称表尾端为栈顶(top),称表头端为栈底(bottom)
称不含元素的空表为空栈
2.栈的抽象数据类型的定义
- 规格说明: 2.2 ADT Stack
抽象数据类型(ADT)是一个实现包括储存数据元素的存储结构以及实现基本操作的算法。
在这个数据抽象思想中,数据类型的定义和它的实现是分开的,这在软件设计中是一个重要的概念。
这使得只研究和使用它的结构而不用考虑它的实现细节成为可能。
- 数据元素: 可以是各种类型的,只要同属一个数据对象即可
- 结构: 数据元素之间呈线性关系.
-
假设栈中有n个数据元素( a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an)
-
则对每一个元素 a i a_i ai(i=1,2,…,n-1)都存在线性关系( a i , a i + 1 a_i,a_{i+1} ai,ai+1)
-
并且 a 1 a_1 a1无前驱, a n a_n an无后继
- 操作:
-
Inistack(&S):初始化操作,其作用是设置一个空栈S
-
Push(&S,x):进栈操作,其作用是将元素x插入栈S中,使x成为栈S的栈顶元素
-
Pop(&S):退栈操作,其作用是当栈不空时删除栈顶元素
-
Top(&S):读栈顶操作,其结果为栈顶元素;当栈S为空时结果为一特殊标志
-
Empty(&S):判栈空操作,若栈S为空栈,则结果为true;否则结果为false
3.栈的基本运算在顺序表上的实现
我们用向量S表示栈,用m表示栈的最大容量,m初始值为0
进栈
进栈的主要操作是:首先判断栈是否已满,若满转出错处理;
若不满,则修改栈顶top的值,然后将入栈元素放入到新的只能订所指的位置
void PushStack(Stack &S,ElemType x,int &top)
{
if(top=m)
error("上溢")
else
{
S[top]=x;
top=top+1;
}
}
退栈
退栈的主要操作是:先判栈是否为空,若栈空(top=0),则应转"下溢"处理
否则看,修改栈顶指针为top=top-1.
判栈空
若栈空则返回true;否则返回false
- 双重栈的基本运算的实现
PushStack(&S,i,x,int top[]):将元素x压入到第i个栈中
PopStack(&S,i,int top[]):当第i个栈不空时弹出其栈顶元素
4.应用
队列
1.队列的基本概念
2.队列的抽象数据类型的定义
3.队列的顺序存储结构
4.循环队列的基本运算在顺序表上的实现
排序
冒泡排序
public static void bubbleSort(int[] arr){
for(int i=0;i<arr.length-1;i++) {
boolean flag=flase; //表示本趟冒泡是否发生交换的标志
for(int j=arr.length-1;j>i;j--) { //一趟冒泡过程
if(arr[j-1]>arr[j]) { //若为逆序,(正序为从小到大)
int temp=arr[j];
arr[j]=a[j+1];
arr[j+1]=temp;
flag=true;
}
if(!flag) return; //本趟遍历没有发生交换,说明表已经有序
}
}
}
快速排序
public static void quickSort(int[] a, int low, int high) {
if(low>high)
return;
int i=low,j=high;
int key=a[low]; //将当前表中第一个元素设为枢轴值,对表进行划分
while(i<j) {
while(i<j && a[j]>key) { //从后向前找到小于等于枢轴值的数
j--;
}
while(i<j && a[i]<=key) { //从前向后找到大于等于枢轴值的数
i++;
}
if(i<j) { //交换两个数
int p=a[i];
a[i]=a[j];
a[j]=p;
}
} //直到遍历完一遍这个数组(i=j),做到了该数组中小于枢轴值的都在左边,大于枢轴值的都在右边
//将枢轴值放在中间,over
int p=a[i];
a[i]=a[low];
a[low]=p;
//对划分好的左右数组继续进行划分
quickSort(a,low,i-1);
quickSort(a,i+1,high);
}
平衡二叉树
任意结点的左、右子树高度差的绝对值不超过1,将这样的二叉树称为平衡二叉树(Balanced Binary Tree), 简称平衡树(AVL)。
定义结点左子树与右子树的高度差为该结点的平衡因子,则平衡二叉树结点的平衡因子的值只可能是-1、0或1。
平衡二叉树的插入
1. LL平衡旋转(右单旋转)
由于在结点A的左孩子(L)
的左子树(L)
上插入了新结点,
A的平衡因子由1增至2,导致以A为根的子树失去平衡,需要一次向右的旋转操作。
将A的左孩子B向右上旋转代替A成为根结点,将A结点向右下旋转成为B的右子树的根结点,而B的原右子树则作为A结点的左子树。
2. RR平衡旋转(左单旋转)
由于在结点A的右孩子(R)
的右子树(R)
上插入了新结点,
A的平衡因子由-1减至-2,导致以A为根的子树失去平衡,需要一次向左的旋转操作。
将A的右孩子B向左上旋转代替A成为根结点,将A结点向左下旋转成为B的左子树的根结点,而B的原左子树则作为A结点的右子树。
3. LR平衡旋转(先左后右双旋转)
由于在A的左孩子(L)
的右子树(R)
上插入新结点,
A的平衡因子由1增至2,导致以A为根的子树失去平衡,需要进行两次旋转操作,先左旋转后右旋转。
先将A结点的左孩子B的右子树的根结点C向左上旋转提升到B结点的位置,
然后再把该C结点向右上旋转提升到A结点的位置。
4. RL平衡旋转(先右后左双旋转)
由于在A的右孩子(R)
的左子树(L)
上插入新结点,
A的平衡因子由-1减至-2,导致以A为根的子树失去平衡,需要进行两次旋转操作,先右旋转后左旋转。
先将A结点的右孩子B的左子树的根结点C向右上旋转提升到B结点的位置,
然后再把该C结点向左上旋转提升到A结点的位置。
哈夫曼树
在含有n个带权叶子结点的二叉树中,其中带权路径长度(WPL)
最小的二叉树称为哈夫曼树,也称最优二叉树。
哈夫曼树的构造
-
将这n个结点分别作为n棵仅含一个结点的二叉树,构成森林F。
-
构造一个新结点,从F中选取两棵根结点权值最小的树作为新结点的左、右子树,并且将新结点的权值置为左、右子树上根结点的权值之和。
-
从F中删除刚才选出的两棵树,同时将新得到的树加入F中。
-
重复步骤2)和3),直至F中只剩下一棵树为止。
从上述构造过程中可以看出哈夫曼树具有如下特点:
-
每个初始结点最终都成为叶结点,且权值越小的结点到根结点的路径长度越大。
-
构造过程中共新建了n-1个结点(双分支结点),因此哈夫曼树中的结点总数为2n-1。
-
每次构造都选择2棵树作为新结点的孩子,因此哈夫曼树中不存在度为1的结点。
哈夫曼编码
首先,将每个出现的字符当作一个独立的结点,其权值为它出现的频度(或次数),构造出对应的哈夫曼树。
显然,所有字符结点都出现在叶结点中。我们可将字符的编码解释为从根至该字符的路径上边标记的序列,其中边标记为0表示“转向左孩子”,标记为1表示“转向右孩子”。
最小生成树
一个连通图的生成树
是图的极小连通子图,它包含图中的所有顶点,并且只含尽可能少的边。
这意味着对于生成树来说,若砍去它的一条边,则会使生成树变成非连通图;若给它增加一条边,则会形成图中的一条回路。
对于一个带权连通无向图G=(V,E)
,生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。
设为G的所有生成树的集合,若T为边的权值之和最小的那棵生成树,则T称为G的最小生成树
(Minimum-Spanning-Tree, MST)。
不难看出,最小生成树具有如下性质:
-
最小生成树不是唯一的,即最小生成树的树形不唯一,R中可能有多个最小生成树。当图G中的各边权值互不相等时,G的最小生成树是唯一的; 若无向连通图G的边数比顶点数少1,即G本身是一棵树时,则G的最小生成树就是它本身。
-
最小生成树的边的权值之和总是唯一的,虽然最小生成树不唯一,但其对应的边的权值之和总是唯一的,而且是最小的。
-
最小生成树的边数为顶点数减1。
最小生成树的性质:
假设G=(V,E)
是一个带权连通无向图,U是顶点集V的一个非空子集。若(u,v)
是一条具有最小权值的边,其中u∈U
,v∈V-U
,则必存在一棵包含边(u,v)
的最小生成树。
普利姆算法
假设N={V,E}
是连通网,ET是N上最小生成树中边的集合。
算法从VT={u0}(u0∈V)
,ET={}
开始,
重复执行下述操作:
在所有u∈VT
,v∈V-VT
的边(u,v)∈E
中找一条代价最小的边(u0,v0)
并入集合ET,
同时将v0
并入VT
,直至VT=V
为止。
此时ET中必有n-1条边,则T={VT,ET}
为N的最小生成树。
克鲁斯卡尔算法
假设N=(V,E)
是连通网,对应的最小生成树T=(VT,ET)
。
初始化: VT=V
, ET=Ø
。即每个顶点构成一棵独立的树, T此时是一个仅含|V|个顶点的森林。
循环(重复下列操作至T是一棵树):
按G的边的权值递增顺序依次从E-ET
中选择一条边,
若这条边加入T后不构成回路,则将其加入ET,否则舍弃,直到ET中含有n-1条边。
最短路径
图是带权图时,把从一个顶点v0
到图中其余任意一个顶点vi
的一条路径(可能不止一条)所经过边上的权值之和,定义为该路径的带权路径长度
,把带权路径长度最短的那条路径称为最短路径
。
求解最短路径的算法通常都依赖于一种性质
,即两点之间的最短路径也包含了路径上其他顶点间的最短路径。
带权有向图G的最短路径问题一般可分为两类:
一是单源最短路径,即求图中某一顶点到其他各顶点的最短路径,可通过经典的Dijkstra算法求解;
二是求每对顶点间的最短路径,可通过Floyd-Warshall算法来求解。
迪杰斯特拉算法
该算法设置一个集合S
记录已求得的最短路径的顶点,可用一个数组s[]
来实现,初始化为0,
s[vi]=1
时表示将顶点vi
放入S
,初始时把源点v0
放入S
。
此外,在构造过程中还设置了两个辅助数组:
dist[]
:记录从源点v0到其他各顶点当前的最短路径长度,dist[i]
的初值为arcs[v0][i]
。
path[]
:path[i]
表示从源点到顶点i之间的最短路径的前驱结点,在算法结束时,可根据其值追溯得到源点v0到顶点vi的最短路径。
假设从项点0出发,即v0= 0
,集合S最初只包含顶点0,邻接矩阵arcs表示带权有向图,
arcs[i][j]
表示有向边<i,j>
的权值,若不存在有向边<i,j>
,则arcs[i][j]
为∞。
Dijkstra算法的步骤如下(不考虑对path[]
的操作):
-
初始化:集合S初始为{0},
dist[]
的初始值dist[i]=arcs[0][i]
,i=1,2,...,n-1
。 -
从顶点集合V-S中选出vj,满足
dist[j]=Min{dist[i] |vi∈V-S}
, vj就是当前求得的一条从V0
出发的最短路径的终点,令S= S∪{j}
。 -
修改从v0出发到集合V-S上任一顶点vk可达的最短路径长度:若
dist[j]+arcs[j][k]< dist[k]
,则令dist[k]=dist[j]+arcs[j][k]
。 -
重复2)–3)操作共n-1次,直到所有的顶点都包含在S中。
AOE网
在带权有向图中,以顶点表示事件,以有向边表示活动,以边上的权值表示完成该活动的开销(如完成活动所需的时间),则称这种有向图为用边表示活动的网络,简称为AOE网
。
AOE网具有以下两个性质:
① 只有在某顶点所代表的事件发生后,从该顶点出发的各有向边所代表的活动才能开始;
② 只有在进入某一顶点的各有向边所代表的活动都已结束时,该顶点所代表的事件才能发生。
AOE网中仅有一个入度为0的顶点,称为开始顶点(源点)
,它表示整个工程的开始;
网中也仅存在一个出度为0的顶点,称为结束顶点(汇点)
,它表示整个工程的结束。
关键路径
从源点到汇点的所有路径中,具有最大路径长度的路径称为关键路径
,而把关键路径上的活动称为关键活动
。