Ubuntu深度学习的环境配置

本文详述了在Ubuntu上配置深度学习环境的过程,包括安装Anaconda、创建虚拟环境、安装cuda和cudnn、安装pytorch以及配置Pycharm Interpreter。在Anaconda安装过程中遇到了命令找不到的问题,通过修改bashrc解决了。接着安装cuda9.0和cudnn7.0.5,最后安装pytorch,并提醒注意Python和CUDA版本匹配,以及Pycharm的环境配置路径应与命令行中的python路径一致。
摘要由CSDN通过智能技术生成

前几天,我们导师派遣一位师兄躲在导师车里秘密潜入学校,目的是为了在学校实验室里几台机器上装配远程操控软件,方便我们在家里就可以实现对网络的训练。(没有云服务器的寒酸)
结果分给我了一台我从来没就没有用过的电脑,对上面的环境啥的都不清楚,就这样我就开始了长达一天多的Ubuntu深度学习环境的配置过程。其实我原先在Windows上配置过不止一次环境了,对于整个流程是驾轻就熟的,但是在Ubuntu上从来就没有试过,原先尝试用Ubuntu的电脑跑程序也几乎都没有成功过(毕竟是个菜鸟,Win傻瓜操作系统,什么都可视化操作)。下面啥也别说了,直接开始说明我的安装历程和中间遇到过的坑。

1.安装Anaconda

直接去清华镜像进行下载
下载完了之后,先进入这个安装包所在的路径,然后输入命令:

bash 下载好的文件名

随后就是一系列的enter和accept的选择,但是到最后一步,会提示是否把anaconda加入到系统环境变量中:
建议像我这样的菜鸟来说,就不要加了,直接回车,默认就是no。
你以为就这样安好了吗,当你在命令行输入conda的命令,你会发现command not found,这就是前面选择了no的原因,所以我们需要自己手动将anaconda的bin目录加入PATH。
在这里以Anaconda2为例
我们采用如下的命令来实现上述操作(下列两个命令均可):

echo export PATH="~/anaconda2/bin:$PATH" >> ~/.bashrc(去掉单引号)
echo 'export PATH=~/anaconda2/bin:$PATH' >> ~/.bashrc(去掉双引号)

还有最后一步比较重要,就是我们需要更新bashrc来使我们刚刚的修改立即生效,于是我们采用:

source ~/.bashrc

到此为止我们就安装成功了。

2.用Anaconda创建新的虚拟环境

既然Anaconda都装上了,我们就先用一用吧,先创建一个虚拟环境放在这里,这里就会碰到第一个坑。
创建虚拟环境我们采用语句:
我一般使用的python3.6版本的,而且使用的深度学习的框架是pytorch,所以名称叫做pytorch。

conda create -n pytorch python=3.6

这里说一下遇到的第一个坑以及解决办法。
这是和anaconda有关的,就是先开始你可能还能用,但是当网不好或者没有用清华源来下载安装东西的时候,下的东西会断开,当断了你重新输入相同的指令进行下载的时候就会报出:
段错误(核心已转储)
这个错误困扰了我大半天,是真的大半天。
首先我去直接去搜索这个错误的有关信息,结果收到的都是:
超过了栈的边界&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值