【DeepLearning】Ubuntu 中深度学习环境配置完整流程

1 显卡驱动

支持 CUDA 的所有显卡型号: Link

  1. 查询显卡型号
lspci -nn | grep VGA

在这里插入图片描述

Vendor ID:Device ID 为 10de:21c4,在浏览器或者 Link 中搜索。

  1. 填写显卡信息: Link

在这里插入图片描述

  1. 选择要下载的版本(可以选个新一点的 )

在这里插入图片描述

  1. 运行 .run 文件
sudo sh ./NVIDIA-Linux-x86_64-*.run
  1. 测试
nvidia-smi

2 CUDA

参考文档: Link

  1. 选择要安装的版本: Link
  • 先通过 nvidia-smi 查看驱动支持的 CUDA 最高版本,我的最高版本为 11.8
  • 然后在此范围内选择项目中比较常用的 CUDA 版本,只要低于最高版本都可以

在这里插入图片描述

  1. 查询本机系统信息
uname -m && cat /etc/*release

在这里插入图片描述

  1. 选择你的平台,下载相应的 .run 文件并运行
    在这里插入图片描述

安装完成后,得到下面的输出信息。

在这里插入图片描述

  1. 修改 PATHLD_LIBRARY_PATH 变量来设置开发环境

参考文档: Link

vim ~/.bashrc

# 添加以下内容
# >>> cuda >>>
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
# <<< cuda <<<
  1. 测试
nvcc -V

在这里插入图片描述

3 cuDNN

3.1 cuDNN 9.0.0 之前版本

  1. 安装 Zlib
sudo apt install zlib1g
  1. 下载 cuDNN: Link,要注册个帐号

在这里插入图片描述

  1. 根据安装的 CUDA 版本选择 cuDNN 版本,可以选新一点的

在这里插入图片描述

  1. 下载压缩包

在这里插入图片描述

# 解压下载的文件
tar -xvf cudnn-linux-x86_64-8.x.x.x_cudaX.Y-archive.tar.xz

# 复制到 CUDA 的目录下
sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include 
sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64 
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
  1. 测试(有点麻烦,可以忽略)
sudo apt-get install libcudnn8=${cudnn_version}-1+${cuda_version}
sudo apt-get install libcudnn8-dev=${cudnn_version}-1+${cuda_version}
sudo apt-get install libcudnn8-samples=${cudnn_version}-1+${cuda_version}

${cudnn_version} = 8.x.x.x
${cuda_version} = cuda12.1 or cuda11.8…
Note: 以自己安装的版本为准!

cp -r /usr/src/cudnn_samples_v8/ $HOME
cd  $HOME/cudnn_samples_v8/mnistCUDNN
make clean && make
./mnistCUDNN

如果 cuDNN 正确安装和运行,你会看到类似以下的信息:Test passed!

3.2 cuDNN 9.0.0 之后版本

参考文档: Link

cuDNN 9 可以与之前的 cuDNN 版本共存,如果有旧版本的 cuDNN,安装 cuDNN 9 时不会自动删除旧版本。

之后,如果要在旧版本与新版本之间切换,执行 sudo update-alternatives --config libcudnn 并选择相应的 cuDNN 版本。

  1. 选择安装的版本: Link
    在这里插入图片描述

  2. 选择你的平台,下载相应的软件包
    在这里插入图片描述

wget https://developer.download.nvidia.com/compute/cudnn/9.2.1/local_installers/cudnn-local-repo-ubuntu2004-9.2.1_1.0-1_amd64.deb
sudo dpkg -i cudnn-local-repo-ubuntu2004-9.2.1_1.0-1_amd64.deb

sudo cp /var/cudnn-local-repo-ubuntu2004-9.2.1/cudnn-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
  1. 安装 cuDNN
  • Install for CUDA 11, run:
sudo apt-get -y install cudnn9-cuda-11
  • Install for CUDA 12, run:
sudo apt-get -y install cudnn9-cuda-12

3.3 pip 安装 cuDNN 9.0.0 之后版本

参考文档: Link

NVIDIA 提供了通过 pip 安装 cuDNN 的 Python Wheels,但是在 pip 环境之外使用 cuDNN 时,还须配置主机环境。

  1. 更新 pip 和 wheel 模块
python3 -m pip install --upgrade pip wheel
  1. 安装 cuDNN
  • Install for CUDA 11
python3 -m pip install nvidia-cudnn-cu11

若要指定 cuDNN 版本,运行:

python3 -m pip install nvidia-cudnn-cu11==9.x.y.z
  • Install for CUDA 12
python3 -m pip install nvidia-cudnn-cu12

若要指定 cuDNN 版本,运行:

python3 -m pip install nvidia-cudnn-cu12==9.x.y.z

4 torch

  1. 根据项目需要确定要安装的版本

  2. 下载 .whl 文件: Link
    在这里插入图片描述

  3. 安装 torch

conda activate xxx
pip install torch-*+cu*-cp*-cp*m-linux_x86_64.whl
  1. 测试
python

>>> import torch
>>> torch.cuda.is_available()
True
>>> torch.__version__
'1.11.0+cu113'

5 torchvision

  1. 根据 torch 选择对应的 torchvision 版本: Link

在这里插入图片描述

  1. 下载 .whl 文件: Link
    在这里插入图片描述
  2. 安装 torchvision
conda activate xxx
pip install torchvision-*+cu*-cp*-cp*m-linux_x86_64.whl
  1. 测试
python

>>> import torchvision
>>> torchvision.__version__
'0.12.0+cu113'
要在Ubuntu配置深度学习环境,你可以按照以下步骤进行操作: 1. 准备工作:首先,你需要下载适合你的设备的Ubuntu系统镜像。你可以从Ubuntu官网或者历史版本官网下载。如果你的网速较慢,你也可以使用阿里云镜像进行下载。另外,你需要一个软碟通工具来将镜像刻录到U盘。 2. 安装Ubuntu:将刻录好的Ubuntu系统镜像插入你的联想R7000-2020设备,并启动电脑。根据屏幕上的提示,选择从U盘启动,并按照安装向导的指示完成Ubuntu的安装过程。 3. 配置深度学习环境:安装完成后,你可以打开终端,并执行以下步骤来配置深度学习环境。 a. 更新系统:在终端运行以下命令,更新系统以获取最新的软件包。 ``` sudo apt update sudo apt upgrade ``` b. 安装NVIDIA驱动程序:由于你的设备配备了GTX1650显卡,你需要安装适合该显卡的NVIDIA驱动程序。你可以通过以下命令来安装驱动程序。 ``` sudo apt install nvidia-driver-<version> ``` 其,`<version>`应该是适合你的显卡的驱动程序版本号。 c. 安装深度学习框架:根据你的需求,你可以选择安装不同的深度学习框架,比如TensorFlow、PyTorch等。你可以使用以下命令来安装TensorFlow和PyTorch。 ``` # 安装TensorFlow pip install tensorflow # 安装PyTorch pip install torch torchvision ``` d. 安装其他依赖项:深度学习框架通常需要一些其他的依赖项。你可以使用以下命令来安装这些依赖项。 ``` sudo apt install build-essential libopencv-dev libopenblas-dev libatlas-base-dev ``` e. 验证安装:安装完成后,你可以创建一个简单的Python脚本来验证深度学习框架是否安装正确。你可以使用以下代码来验证TensorFlow和PyTorch。 ``` # TensorFlow验证 import tensorflow as tf print(tf.__version__) # PyTorch验证 import torch print(torch.__version__) ``` 通过按照以上步骤进行操作,你可以在你的联想R7000-2020设备上成功配置深度学习环境。请确保你选择了适合你的设备和需求的版本,并根据需要安装其他的深度学习库或工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G.Chenhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值