1. 基本介绍
- 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
- 堆是具有以下性质的完全二叉树:每个节点的值都大于或等于其左右孩子节点的值,称为大顶堆,但不要求节点的左孩子的值和右孩子的值的大小关系。
- 每个节点的值都小于或等于其左右孩子节点的值,称为小顶堆。
2. 大顶堆举例
- 我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:
- 大顶堆特点:
arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2]
// i 对应节点的序号,i从0开始编号 - 如果 i 是最后一个非叶子节点,说明数组长度
length=2*i+2
,则 i=length/2-1
,这个值在后面堆排序中会用到
3. 小顶堆举例
- 小顶堆:
arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2]
// i 对应节点序号,i从0开始编号
4. 堆排序基本思想
- 将待排序序列构造成一个大顶堆
- 此时,整个序列的最大值就是堆顶的根节点。
- 将其与末尾元素进行交换,此时末尾就为最大值。
- 然后将剩余 n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
- 可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了
5. 图解说明
- 数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序,对应的堆结构如下
5.1 步骤一
- 叶子节点不用调整,从第一个非叶子节点调整,arr.length/2-1=5/2-1=1,也就是数值为6的节点,从左往右,从下往上进行调整
- 找到第2个非叶子节点4,由于[4,9,8]中9最大,4和9交换
- 这时子树[4,5,6]结构混乱,继续调整,4和6交换
5.2 步骤二
- 将堆的首尾元素进行交换,末端元素变为最大。然后继续调整结构,再将堆的首尾元素交换,得到第2大元素。如此反复此过程,交换、重建、交换,最终使整个序列有序。
- 9和4交换
6. 代码实现
import java.util.Arrays;
public class HeapSort {
public static void main(String[] args) {
int[] arr = {4, 6, 8, 5, 9};
System.out.println(Arrays.toString(arr));
heapSort(arr);
System.out.println(Arrays.toString(arr));
}
public static void heapSort(int[] arr) {
int temp = 0;
System.out.println("堆排序开始~~~");
for (int i = arr.length / 2 - 1; i >= 0; i--) {
adjustHeap(arr, i, arr.length);
}
for (int i = arr.length - 1; i > 0; i--) {
temp = arr[i];
arr[i] = arr[0];
arr[0] = temp;
adjustHeap(arr, 0, i);
}
}
public static void adjustHeap(int[] arr, int i, int length) {
int temp = arr[i];
for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
if (k + 1 < length && arr[k] < arr[k + 1]) {
k++;
}
if (arr[k] > temp) {
arr[i] = arr[k];
i = k;
} else {
break;
}
}
arr[i] = temp;
}
}