排序算法:堆排序

1. 基本介绍

  • 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
  • 堆是具有以下性质的完全二叉树:每个节点的值都大于或等于其左右孩子节点的值,称为大顶堆,但不要求节点的左孩子的值和右孩子的值的大小关系。
  • 每个节点的值都小于或等于其左右孩子节点的值,称为小顶堆。

2. 大顶堆举例

在这里插入图片描述

  • 我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:

在这里插入图片描述

  • 大顶堆特点:arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2] // i 对应节点的序号,i从0开始编号
  • 如果 i 是最后一个非叶子节点,说明数组长度 length=2*i+2,则 i=length/2-1,这个值在后面堆排序中会用到

3. 小顶堆举例

在这里插入图片描述

  • 小顶堆:arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2] // i 对应节点序号,i从0开始编号

4. 堆排序基本思想

  • 一般升序采用大顶堆,降序采用小顶堆
  1. 将待排序序列构造成一个大顶堆
  2. 此时,整个序列的最大值就是堆顶的根节点。
  3. 将其与末尾元素进行交换,此时末尾就为最大值。
  4. 然后将剩余 n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
  • 可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了

5. 图解说明

  • 数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序,对应的堆结构如下

5.1 步骤一

在这里插入图片描述

  • 叶子节点不用调整,从第一个非叶子节点调整,arr.length/2-1=5/2-1=1,也就是数值为6的节点,从左往右,从下往上进行调整

在这里插入图片描述

  • 找到第2个非叶子节点4,由于[4,9,8]中9最大,4和9交换

在这里插入图片描述

  • 这时子树[4,5,6]结构混乱,继续调整,4和6交换

在这里插入图片描述

  • 此时得到一个大顶

5.2 步骤二

  • 将堆的首尾元素进行交换,末端元素变为最大。然后继续调整结构,再将堆的首尾元素交换,得到第2大元素。如此反复此过程,交换、重建、交换,最终使整个序列有序。
  • 9和4交换

在这里插入图片描述

  • 重新调整,变成大顶堆

在这里插入图片描述

  • 8和5交换,得到第2大元素

在这里插入图片描述

  • 重复上面的过程,最终使得整个序列有序

在这里插入图片描述

6. 代码实现

import java.util.Arrays;

public class HeapSort {


    public static void main(String[] args) {
        int[] arr = {4, 6, 8, 5, 9};
        System.out.println(Arrays.toString(arr));
        heapSort(arr);
        System.out.println(Arrays.toString(arr));
    }

    // 堆排序
    public static void heapSort(int[] arr) {
        int temp = 0;
        System.out.println("堆排序开始~~~");
        // 1.从最后一个叶子节点开始向上遍历各个节点,来构建大顶堆
        for (int i = arr.length / 2 - 1; i >= 0; i--) {
            adjustHeap(arr, i, arr.length);
        }
        // 2.将堆顶元素与末尾元素交换,将最大元素下换到数组末端
        // 3.从0位置开始,重新调整结构,并且每次调整的元素个数-1,再次变为大顶堆
        // 反复进行2和3,即变大顶堆+首尾元素交换的过程,直到整个数组有序
        for (int i = arr.length - 1; i > 0; i--) {
            //交换
            temp = arr[i];
            arr[i] = arr[0];
            arr[0] = temp;
            adjustHeap(arr, 0, i);
        }
    }

    /**
     * 将以 i 对应的非叶子节点的树调整成大顶堆,将大的值向上移动,小的值向下移动
     * {4, 6, 8, 5, 9}
     * i=1第一遍调整后为{4, 9, 8, 5, 6}
     * i=0第二遍调整后为{9, 6, 8, 5, 4}
     *
     * @param arr    待调整的数组
     * @param i      表示非叶子节点在数组中的索引
     * @param length 表示对多少个元素继续调整, length 逐渐减少
     */
    public static void adjustHeap(int[] arr, int i, int length) {
        // 取出当前元素,保存在临时变量
        int temp = arr[i];
        // 将i节点与i节点的左子节点和右子节点进行比较
        for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
            // 找出左子节点和右子节点中大的那个节点,赋值给k
            if (k + 1 < length && arr[k] < arr[k + 1]) {
                k++;
            }
            // 如果子节点大于父节点,就交换;否则退出循环
            if (arr[k] > temp) {
                arr[i] = arr[k];
                i = k;
            } else {
                break;
            }
        }
        // 退出循环后,说明以i为父节点的树,i位置的值为最大值
        // 将原始i节点的值赋给i变化后的位置,完成交换
        arr[i] = temp;
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值