奶奶看了都会,AI翻唱,RVC声音模型训练制作教学,附 派蒙模型

直接进入正题

试听: 月亮船-派蒙AI翻唱

月亮船-派蒙翻唱

进入仙宫云,新用户有免费试用5元免费额度,点 此链接 注册的新用户,额外赠送3元额度。

为了方便同学们快速得到体验,镜像里已内置了 派蒙 的模型。

1、部署实例

首先部署一个新的实例

2、选择镜像

一路选下去,到下图

然后选择【社区镜像】,搜索【篝火RVC】,选择之,其它默认,点【确认部署】

3、打开终端

       等待部署完成。打开【Jupyter】

3.1、打开一个终端

4、启动

执行命令【systemctl start rvc-web】启动

systemctl start rvc-web

5、WebUI

之后,打开【WebUI】

为了易懂,教程路径都会直接使用【绝对路径】

6、人声,伴奏分离

6.1:上传你要翻唱的歌曲

6.2:选择人声,伴奏分离之后的目录

6.3:选择转换的【模型】【HP2】

人声目录

/root/RVC-WebUI/opt-vocals

伴奏目录

/root/RVC-WebUI/opt-instruments

6.4:转换,等待完成,之后。进入【/root/RVC-WebUI/opt-vocals】可以看到分离之后的人声音频

cd /root/RVC-WebUI/opt-vocals

7、推理

步骤 6 得到了干净的人声音频文件了

/root/RVC-WebUI/opt-vocals/月亮船.flac

按照下图步骤进行推理

选择模型,目前内置了【派蒙】的模型,步骤 8 有自行训练自已喜欢的声音

8:训练

训练自已喜欢的声音

8.1:收集干净的人声【下载CV配音】【步骤 6 得到的干净人声】等

8.2:将收集的声音放到一个目录里,比如可莉的声音,小编放的目录是

【/root/RVC-WebUI/raw_data/keli】

/root/RVC-WebUI/raw_data/keli

8.3:按照图下进行训练

8.4:训练完毕之后,刷新音色,即可选择自己刚刚推理好的模型了。测试流程同 步骤 7

教程结束,教程写的有点乱,多多包涵,有什么不懂的欢迎私

9、后记

不使用的场合,记得关机,否则会消耗时长。

注:在使用AI声音模型之前,请务必仔细研究相关的版权和知识产权法律,以确保您的使用合法合规

### AI语音对话训练模型的构建、训练与使用 #### 构建AI语音对话模型的基础要素 构建AI语音对话模型涉及到多个关键技术组件。首先是语音识别技术,它负责将用户的口语输入转换成文字形式以便进一步处理[^1]。接着是自然语言理解(NLU),用于解析和解释这些文本命令的意义;再者就是对话管理器,用来追踪对话状态并决定下一步动作;最后则是文本到语音(TTS)合成部分,可以将计算机的回答转化为人类可听懂的声音输出[^2]。 #### 数据准备与预处理 为了使上述各个组成部分有效运作,在开发初期就需要收集大量高质量的数据作为训练材料。这包括但不限于标准普通话及其他地方口音甚至少数民族语言在内的多样化语料库[^3]。此外还需要特别注意保护个人隐私以及确保所使用的资料版权合法合规等问题。 #### 模型架构的选择与实现 目前主流的做法是采用端到端(end-to-end)学习框架来进行整体系统的搭建。这种模式下不再需要手工定义特征提取过程而是让机器自动从原始信号中发现有用的信息。具体来说可能会运用卷积神经网络(CNNs),循环神经网络(RNNs)及其变体LSTM/GRU等先进算法来捕捉时间序列特性从而提高预测准确性[^4]。 ```python import torch.nn as nn class VoiceDialogueModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(VoiceDialogueModel, self).__init__() self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): out, _ = self.lstm(x) out = self.fc(out[:, -1, :]) return out ``` 此代码片段展示了一个简单的基于LSTM结构的语音对话模型实例化方法。实际应用时还需考虑更多细节如正则化防止过拟合、调整超参数以获得最佳性能等等。 #### 训练流程概述 当准备好足够的标注数据之后就可以开始正式进入训练阶段了。通常情况下我们会先初始化权重随机分布然后通过反向传播机制不断更新参数直至收敛至全局最优点近停止迭代。值得注意的是由于各子任务间存在关联性因此建议采取联合调优策略而非孤立优化单个环节以免造成次优解现象发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值