垃圾回收的算法与实现学习笔记二、GC基本概念

一、对象、头、域

1、对象

1)在面向对象编程中:指具体有属性和行为的事物

2)GC世界中:表示通过应用程序利用的数据的集合。

3)对象配置在内存空间里。

4)GC 根据情况将配置好的对象进行移动或销毁。

5)对象是GC的基本单位

6)对象由头(header)和域(field)构成

2、头

1)对象中保存对象本身信息的部分称为头(可以理解为标识)

2)主要包含:对象的大小、对象的种类

3、域

1)对象使用者在对象中可访问的部分称为“域”

2)与类型分为指针(指向内存空间中某块区域的值)、非指针(是指在编程中直接使用值本身,比如:数值、字符)

 

二、指针

1、GC根据对象的指针去搜索其他对象

2、GC对非指针不进行任何操作

三、Mutator(有改变某物的意思)

1、改变对象引用关系

2、具体操作

1)生产对象

2)变更指针

 

四、堆

1、堆指的是用于动态(程序执行时)存放对象的内存空间。当mutator申请存放对象时,所需的内存空间就会从这个堆中被分配给mutator

2、执行mutator前 => GC要分配用于堆的存储空间  => mutator 执行  => 程序按照mutator 的要求在堆中存放对象  => 堆被对象占满 => GC启动 => 分配可用空间

 

五、活动对象、非活动对象

1、将内存空间中的对象能通过mutator引用的对象称为 "活动对象"  反之  "非活动对象"(死掉的对象)

2、死掉的对象没法通过mutator找到他

3、GC 会保留活动对象销毁非活动对象

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值