
大模型技术与应用
文章平均质量分 94
此专栏部分深入浅出的从LLM历史发展到未来做了一个全面的阐述,去掉了难懂的过于专业的内容,力求用读书的方式,在读完后能对LLM有一个深刻的理解。
我就是全世界
数学专业出身,深耕于人工智能领域,具备丰富的跨领域项目经验。精通Web网站开发、移动端API构建、桌面程序设计,尤其在大数据处理(Hadoop)、前端React技术、FastDFS资源服务器、数据库管理、系统运维、Scrapy分布式爬虫、数据挖掘、AI视觉、边缘计算、嵌入式开发及鸿蒙开发等方面表现卓越。在人工智能的浪潮中,我不仅是一名技术的践行者,更是一位心得的分享者,致力于将前沿科技与实际应用相结合,推动智能时代的创新与发展。
展开
-
VSCode集成Python环境搭建配置详细步骤
如果你需要自定义安装路径或选择特定的组件,可以点击“Customize installation”选项。通常情况下,使用默认设置即可。原创 2024-09-20 16:24:05 · 1050 阅读 · 0 评论 -
开源集成开发环境搭建之VSCode启动Jupyter Notebook
在VSCode中使用Jupyter Notebook时,掌握一些常用的快捷键可以大大提高你的工作效率。特别是在命令状态下,这些快捷键能够帮助你快速完成各种操作,而不需要频繁地使用鼠标。下面是一些常用的快捷键介绍,让你在VSCode中玩转Jupyter Notebook更加得心应手。掌握这些常用的快捷键,可以让你在使用VSCode中的Jupyter Notebook时更加高效。无论是运行代码、插入单元格,还是查看变量和输出结果,这些快捷键都能帮助你快速完成各种操作。希望这些快捷键能成为你日常编程中的得力助手。原创 2024-09-19 14:28:57 · 1603 阅读 · 0 评论 -
开源集成开发环境搭建之VSCode安装部署教程
在编程的世界里,IDE(Integrated Development Environment,集成开发环境)是开发者们的得力助手。它不仅仅是一个简单的文本编辑器,而是一个集成了代码编辑、编译、调试、版本控制等多种功能于一体的强大工具。IDE的存在,让开发者能够在一个统一的界面中完成从代码编写到项目部署的整个流程,极大地提高了开发效率。想象一下,如果没有IDE,开发者可能需要在多个工具之间来回切换:用一个编辑器写代码,用另一个工具编译代码,再用第三个工具进行调试。这样的工作流程不仅繁琐,还容易出错。原创 2024-09-19 13:53:55 · 1230 阅读 · 0 评论 -
LLM常见应用领域
在人工智能(AI)的浩瀚星空中,大语言模型(Large Language Models,简称LLM)无疑是最耀眼的星辰之一。这些模型,如GPT-3、BERT和T5,以其惊人的语言理解和生成能力,正在改变我们与世界互动的方式。那么,究竟什么是LLM呢?大语言模型是一种基于深度学习的模型,专门设计用于理解和生成人类语言。它们通过分析大量的文本数据,学习语言的结构、语法、语义以及上下文关系。这些模型通常由数亿甚至数十亿个参数组成,能够处理复杂的语言任务,如文本生成、翻译、问答和情感分析。原创 2024-09-19 11:03:00 · 509 阅读 · 0 评论 -
LLM的工作原理详解
在自然语言处理(NLP)中,token是指文本的最小单位。它可以是一个单词、一个字符,甚至是一个子词(subword)。例如,句子“我喜欢学习新知识”可以被token化为:“我”,“喜欢”,“学习”,“新”,“知识”。Tokenization是NLP中的第一步,它将连续的文本分割成离散的token。这些token随后会被用于模型的输入,以便模型能够理解和处理文本。Transformer模型在摘要生成任务中能够自动提取文本中的关键信息,生成简洁、准确的摘要。LLM的发展之路充满了机遇与挑战。原创 2024-09-14 17:34:13 · 748 阅读 · 0 评论 -
走进LLM世界之LLM历史与发展
大型语言模型(LLM)是指那些拥有数十亿甚至数千亿参数的深度学习模型,专门设计用于理解和生成人类语言。这些模型通过大量的文本数据进行训练,能够捕捉语言的复杂性和细微差别。LLM的核心原理在于利用统计方法和机器学习技术,从海量数据中学习语言的规律和模式。数据输入:模型接收大量的文本数据作为输入。学习过程:通过深度学习算法,模型学习文本中的语言模式和结构。生成输出:模型能够根据学习到的知识生成新的文本或回答问题。原创 2024-09-14 14:48:48 · 1104 阅读 · 0 评论