
python
文章平均质量分 67
我就是全世界
数学专业出身,深耕于人工智能领域,具备丰富的跨领域项目经验。精通Web网站开发、移动端API构建、桌面程序设计,尤其在大数据处理(Hadoop)、前端React技术、FastDFS资源服务器、数据库管理、系统运维、Scrapy分布式爬虫、数据挖掘、AI视觉、边缘计算、嵌入式开发及鸿蒙开发等方面表现卓越。在人工智能的浪潮中,我不仅是一名技术的践行者,更是一位心得的分享者,致力于将前沿科技与实际应用相结合,推动智能时代的创新与发展。
展开
-
pandoc强大的开源文档处理框架详细介绍
Pandoc是一个功能强大的开源文档转换工具,广泛应用于学术界、技术文档处理、博客写作等多个领域。其主要功能是将一种标记格式转换为另一种标记格式,支持多达28种不同的文档格式。多格式支持:Pandoc支持多种输入和输出格式,包括Markdown、HTML、LaTeX、Microsoft Word 的 DOCX、EPUB、PDF等。高度自定义:Pandoc不仅支持基础的文档转换,还可以通过 Lua、Python 等脚本语言实现高度自定义的文档转换。丰富的扩展语法。原创 2024-09-09 12:23:22 · 2159 阅读 · 0 评论 -
使用 Streamlit 和 asyncio 模块进行异步编程
Streamlit 是一个用于构建数据应用程序的强大工具,但它本身并不直接支持异步编程。然而,通过结合 Python 的asyncio模块,我们可以在 Streamlit 应用中实现异步处理,从而提高应用的响应性和效率。原创 2024-07-09 11:28:54 · 1561 阅读 · 0 评论 -
python模块导入错误:ImportError: cannot import name
打开文件,确保其中定义了auto_run函数。# utils/searxng_utils.py def auto_run() : # 函数实现 pass通过以上步骤,你应该能够解决的问题。原创 2024-07-09 10:48:44 · 846 阅读 · 0 评论 -
bqplot教程:在Jupyter Notebook中进行交互式数据可视化
数据可视化是将数据以图形的形式展现出来,帮助人们更直观、更快速地理解数据背后的信息和规律。提高理解效率:图形化的数据比纯文本或数字更容易被大脑理解和记忆。通过图表,人们可以迅速捕捉到数据的关键点,从而做出更明智的决策。揭示数据模式:数据可视化可以帮助发现数据中的隐藏模式、趋势和异常值。例如,通过折线图可以清晰地看到数据随时间的变化趋势。增强沟通效果:在商业、科研和教育等领域,数据可视化是沟通复杂信息的有力工具。它使得数据分析结果更容易被他人理解和接受。支持决策制定。原创 2024-07-08 14:26:34 · 1875 阅读 · 0 评论 -
监控桌面窗口并实时显示
监控桌面窗口并实时显示import win32guifrom PIL import ImageGrabimport numpy as npimport cv2while True: # 寻找窗口句柄 hwnd = win32gui.FindWindow(None, '消灭病毒') try: # 寻找窗口位置 position = win32gui.GetWindowRect(hwnd) except Exception as e:原创 2020-12-10 17:31:20 · 1286 阅读 · 0 评论 -
pyspark读取和写入mysql
读取mysqlfrom pyspark.sql import SparkSessionfrom pyspark.conf import SparkConffrom pyspark.sql import SQLContextconf = SparkConf().setAppName('数据总览')spark = SparkSession.builder.config(conf=conf)...原创 2019-09-30 11:22:00 · 5897 阅读 · 0 评论 -
Pyspark的Dataframe列名修改的两种方式
有时候用spark的df做聚合操作时,需要重新命名聚合后结果的列名可以用以下两种方式聚合运算后直接输出结果, 列名如下 df_res.agg({'member_name': 'count', 'income': 'sum', 'num': 'sum'}).withColumnRenamed("count(member_name)", "member_num").show()想要把...原创 2019-07-23 10:47:59 · 18017 阅读 · 0 评论 -
Pyspark UDF自定义函数传多个参数
对于pyspark的dataframe写自定义函数时,需要传多个参数的解决方案原本的UDF函数使用方式:这里udf的作用是 根据dataframe中的一列时间exptime,添加新的一列,此列为exptime未来三天时间的时间序列from pyspark.sql import SparkSessionfrom pyspark.conf import SparkConffrom datet...原创 2019-07-30 15:44:14 · 5185 阅读 · 0 评论 -
python 计算上个月或指定前几个月
核心算法逻辑为每次都只计算上个月 要得到前几个月便循环几次以下是函数方法# date 参数是时间格式的时间, n是要计算前几个月import datetimedef getTheMonth(date, n): month = date.month year = date.year for i in range(n): if month == 1:...原创 2019-04-15 19:13:32 · 6693 阅读 · 0 评论 -
PySpark RDD 对多个字段进行groupByKey
Rdd的groupByKey是对(key, value)形式的数据可有时我需要对多个字段进行group操作该如何进行呢 比如(‘2019-01-01’, ‘1’, 1)这样的,对前两个字段进行groupByKey,我们这里将第一个字段名为day_date,第二个gid,第三个num当然可以将rdd变成dataframe然后直接groupBy(‘day_date’, ‘gid’) 但是感觉...原创 2019-01-07 19:34:05 · 12538 阅读 · 2 评论 -
pandas获取一段时间内的所有天日期
pandas的date_range可以获取一段时间内的所有天日期,可是格式是pandas的datetime64[ns]import pandas as pddate_index = pd.date_range('2018-11-01', '2018-11-30')我们需要把pandas的datetime时间格式转普通的datetime格式date_list = [pd.Timestam...原创 2018-11-27 10:42:07 · 7174 阅读 · 2 评论 -
win10 python3 安装pycrypto
在win10上安装很多python包总是报错很头疼,特别是pycrypto这个,试了很多办法,用积分下载win版的都不行,结果呢,还是在github的这个项目的issur中看到了解决办法,很简单,执行下面的语句:前提条件 你的系统得安装好visual c++cd "C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\V...原创 2018-09-12 11:45:33 · 2623 阅读 · 2 评论 -
python centos 下virtualenv 报错OSError: Command
在centos7系统下pip 安装出现错误pip install fails with “connection error: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:598)”或者安装virtualenv出错上述问题执行下述命令即可pip install –trusted-host pyp...原创 2018-09-05 22:31:34 · 711 阅读 · 0 评论 -
python win32 窗口和鼠标操作
用win32api, win32gui 获取窗口句柄,获取鼠标坐标,点击动作import win32gui, win32api, win32con# 获取鼠标当前位置的坐标win32api.GetCursorPos()# 将鼠标移动到坐标处win32api.SetCursorPos((200, 200))# 左点击win32api.mouse_event(win32con.MO...原创 2018-07-23 23:23:00 · 31130 阅读 · 5 评论 -
Mac环境python安装pycurl
在mac环境下安装pycurl总是报错这里有一个坑:在高版本的mac系统环境变量里是找不到openssl的头文件的因为新版本Mac的openssl版本 LibreSSL 2.2.7pip3 uninstall pycurl# 卸载库export PYCURL_SSL_LIBRARY=opensslexport LDFLAGS=-L/usr/local/opt/openssl/li...转载 2018-06-28 15:49:45 · 2728 阅读 · 0 评论