//图的十字链表存储
//杨鑫
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_VERTEX_NUM 20
#define MAX_Info 80
#define MAX_VERTEX_NAME 5
#define MAXQSIZE 5 // 最大队列长度(对于循环队列,最大队列长度要减1)
typedef char InfoType;
typedef char VertexType[MAX_VERTEX_NAME];
typedef int QElemType;
int visited[MAX_VERTEX_NUM]; // 访问标志数组
int(*VisitFunc)(VertexType); // 函数变量
// 弧(边)结构体
typedef struct ArcBox
{
int tailvex,headvex; // 该弧的尾和头顶点的位置
struct ArcBox *hlink,*tlink; // 分别为弧头相同和弧尾相同的弧的链域
InfoType *info; // 该弧相关信息的指针(可无)
}ArcBox;
//顶点结构体
typedef struct
{
VertexType data;
ArcBox *firstin,*firstout; // 分别指向该顶点第一条入弧和出弧
}VexNode;
//图的结构体
typedef struct
{
VexNode xlist[MAX_VERTEX_NUM]; // 表头向量(数组)
int vexnum,arcnum; // 有向图的当前顶点数和弧数
}OLGraph;
// 队列的顺序存储结构(可用于循环队列和非循环队列)
typedef struct
{
QElemType *base; // 初始化的动态分配存储空间
int front; // 头指针,若队列不空,指向队列头元素
int rear; // 尾指针,若队列不空,指向队列尾元素的下一个位置
}SqQueue;
// 返回顶点u在有向图G中的位置(序号),如不存在则返回-1
int LocateVex(OLGraph G,VertexType u)
{
int i;
for(i=0;i<G.vexnum;++i) // 用循环查找该结点
if(!strcmp(G.xlist[i].data, u))
return i;
return -1;
}
// 采用十字链表存储表示,构造有向图G。算法7.3
int CreateDG(OLGraph *G)
{
int i,j,k;
int IncInfo;
char str[MAX_Info];
ArcBox *p;
VertexType v1,v2;
printf("请输入有向图的顶点数,弧数,弧是否含其它信息(是:1,否:0)\n");
scanf("%d%d%d",&(*G).vexnum,&(*G).arcnum,&IncInfo);
printf("请输入%d个顶点的值(<%d个字符):\n",(*G).vexnum,MAX_VERTEX_NAME);
for(i=0;i<(*G).vexnum;++i)
{
// 构造表头向量
scanf("%s%*c",&(*G).xlist[i].data); // 输入顶点值
(*G).xlist[i].firstin=NULL; // 初始化指针
(*G).xlist[i].firstout=NULL;
}
printf("请输入%d条弧的弧尾和弧头(空格为间隔):\n",(*G).arcnum);
for(k=0;k<(*G).arcnum;++k)
{
// 输入各弧并构造十字链表
scanf("%s%s%*c",&v1,&v2);
i=LocateVex(*G,v1); // 确定v1和v2在G中的位置
j=LocateVex(*G,v2);
p=(ArcBox *)malloc(sizeof(ArcBox)); // 产生弧结点(假定有足够空间)
p->tailvex=i; // 对弧结点赋值
p->headvex=j;
p->hlink=(*G).xlist[j].firstin; // 完成在入弧和出弧链表表头的插入
p->tlink=(*G).xlist[i].firstout;
(*G).xlist[j].firstin=(*G).xlist[i].firstout=p;
if(IncInfo)
{
printf("请输入该弧的相关信息(<%d个字符): \n",MAX_Info);
scanf("%s",str);
p->info=(InfoType *)malloc((strlen(str)+1)*sizeof(InfoType));
strcpy(p->info,str);
}
else
p->info=NULL;
}
return 1;
}
// 销毁有向图G
void DestroyGraph(OLGraph *G)
{
int j;
ArcBox *p,*q;
for(j=0;j<(*G).vexnum;j++) // 对所有顶点
{
p=(*G).xlist[j].firstout; // 仅处理出弧
while(p)
{
q=p;
p=p->tlink;
if(q->info)
free(q->info);
free(q);
}
}
(*G).arcnum=0;
(*G).vexnum=0;
}
// 返回v的值
VertexType* GetVex(OLGraph G,int v)
{
if(v>=G.vexnum||v<0)
exit(0);
return &G.xlist[v].data;
}
// 对v赋新值value
int PutVex(OLGraph *G,VertexType v,VertexType value)
{
int i;
i=LocateVex(*G,v);
if(i<0) // v不是G的顶点
return 0;
strcpy((*G).xlist[i].data,value);
return 1;
}
// 返回v的第一个邻接顶点的序号。若顶点在G中没有邻接顶点,则返回-1
int FirstAdjVex(OLGraph G,VertexType v)
{
int i;
ArcBox *p;
i=LocateVex(G,v);
p = G.xlist[i].firstout; // p指向顶点v的第1个出弧
if(p)
return p->headvex;
else
return -1;
}
// 返回v的(相对于w的)下一个邻接顶点的序号,
// 若w是v的最后一个邻接顶点,则返回-1
int NextAdjVex(OLGraph G,VertexType v,VertexType w)
{
int i,j;
ArcBox *p;
i=LocateVex(G,v); // i是顶点v的序号
j=LocateVex(G,w); // j是顶点w的序号
p=G.xlist[i].firstout; // p指向顶点v的第1个出弧
while(p&&p->headvex!=j)
p=p->tlink;
if(p) // w不是v的最后一个邻接顶点
p=p->tlink; // p指向相对于w的下一个邻接顶点
if(p) // 有下一个邻接顶点
return p->headvex;
else
return -1;
}
// 在有向图G中增添新顶点v(不增添与顶点相关的弧,留待InsertArc()去做)
void InsertVex(OLGraph *G,VertexType v)
{
strcpy((*G). xlist[(*G). vexnum].data,v);
(*G). xlist[(*G). vexnum].firstin=(*G). xlist[(*G). vexnum].firstout=NULL;
(*G). vexnum++;
}
//删除G中顶点v及其相关的弧
int DeleteVex(OLGraph *G,VertexType v)
{
int j,k;
ArcBox *p,*q;
k=LocateVex(*G,v); // k是顶点v的序号
if(k<0) // v不是图G的顶点
return 0;
// 以下删除顶点v的出弧
for(j=0;j<(*G). vexnum;j++) // 顶点v的出弧是其它顶点的入弧
{
if(j==k)
continue;
p=(*G). xlist[j].firstin; // 在其它顶点的入弧链表中删除顶点v的出弧
while(p)
if(p->tailvex==k&&p==(*G). xlist[j].firstin) // 待删结点为首结点
{
(*G). xlist[j].firstin=p->hlink;
break;
}
else if(p->tailvex!=k) // 没找到待删结点
{
q=p;
p=p->hlink;
}
else // 找到待删结点且不是首结点
{
q->hlink=p->hlink;
break;
}
}
p=(*G). xlist[k].firstout; // 删除与顶点v有关的出弧
while(p)
{
q=p->tlink; // q指向p的下一个出弧
if(p->info) // 释放p
free(p->info);
free(p);
(*G). arcnum--;
p=q;
}
// 以下删除顶点v的入弧
for(j=0;j<(*G). vexnum;j++) // 顶点v的入弧是其它顶点的出弧
{
if(j==k)
continue;
p=(*G). xlist[j].firstout; // 在其它顶点的出弧链表中删除顶点v的入弧
while(p)
if(p->headvex==k&&p==(*G). xlist[j].firstout) // 待删结点为首结点
{
(*G). xlist[j].firstout=p->tlink;
break;
}
else if(p->headvex!=k) // 没找到待删结点
{
q=p;
p=p->tlink;
}
else // 找到待删结点且不是首结点
{
q->tlink=p->tlink;
break;
}
}
p=(*G). xlist[k].firstin; // 删除与顶点v有关的入弧
while(p)
{
q=p->hlink; // q指向p的下一个入弧
if(p->info) // 释放p
free(p->info);
free(p);
(*G). arcnum--;
p=q;
}
for(j=k+1;j<(*G). vexnum;j++) // 序号>k的顶点依次向前移
(*G). xlist[j-1]=(*G). xlist[j];
(*G). vexnum--; // 顶点数减1
for(j=0;j<(*G). vexnum;j++) // 结点序号>k的要减1
{
p=(*G). xlist[j].firstout; // 处理出弧
while(p)
{
if(p->tailvex>k)
p->tailvex--; // 序号-1
if(p->headvex>k)
p->headvex--; // 序号-1
p=p->tlink;
}
}
return 1;
}
// 在G中增添弧<v,w>
int InsertArc(OLGraph *G,VertexType v,VertexType w)
{
int i,j;
int IncInfo;
char str[MAX_Info];
ArcBox *p;
i=LocateVex(*G,v); // 弧尾的序号
j=LocateVex(*G,w); // 弧头的序号
if(i<0||j<0)
return 0;
p=(ArcBox *)malloc(sizeof(ArcBox)); // 生成新结点
p->tailvex=i; // 给新结点赋值
p->headvex=j;
p->hlink=(*G). xlist[j].firstin; // 插在入弧和出弧的链头
p->tlink=(*G). xlist[i].firstout;
(*G). xlist[j].firstin=(*G). xlist[i].firstout=p;
(*G). arcnum++; // 弧数加1
printf("要插入的弧是否含有其它信息(是: 1,否: 0): \n");
scanf("%d",&IncInfo);
if(IncInfo)
{
printf("请输入该弧的相关信息(<%d个字符): \n",MAX_Info);
scanf("%s",str);
p->info=(InfoType *)malloc((strlen(str)+1)*sizeof(InfoType));
strcpy(p->info,str);
}
else
p->info=NULL;
return 1;
}
// 在G中删除弧<v,w>
int DeleteArc(OLGraph *G,VertexType v,VertexType w)
{
int i,j;
ArcBox *p1,*p2;
i=LocateVex(*G,v); // 弧尾的序号
j=LocateVex(*G,w); // 弧头的序号
if(i<0||j<0||i==j)
return 0;
p2=(*G). xlist[i].firstout; // 将弧结点从出弧链表中删去
if(p2&&p2->headvex==j) // 第1个结点为待删除结点
(*G). xlist[i].firstout=p2->tlink;
else
{
while(p2&&p2->headvex!=j) // 向后找
{
p1=p2;
p2=p2->tlink;
}
if(p2) // 没到表尾
p1->tlink=p2->tlink;
}
p2=(*G). xlist[j].firstin; // 将弧结点从入弧链表中删去
if(p2&&p2->tailvex==i)
(*G). xlist[j].firstin=p2->hlink;
else
{
while(p2&&p2->tailvex!=i)
{
p1=p2;
p2=p2->hlink;
}
if(p2) // 没到表尾
p1->hlink=p2->hlink;
}
if(p2->info) // 释放弧结点
free(p2->info);
free(p2);
(*G). arcnum--; // 弧数减1
return 1;
}
void DFS(OLGraph G,int i) // DFSTraverse()调用
{
ArcBox *p;
visited[i]=1; // 访问标志数组置1(已被访问)
VisitFunc(G.xlist[i].data); // 遍历第i个顶点
p=G.xlist[i].firstout; // p指向第i个顶点的出度
while(p&&visited[p->headvex]) // p没到表尾且该弧的头顶点已被访问
p=p->tlink; // 查找下一个结点
if(p&&!visited[p->headvex]) // 该弧的头顶点未被访问
DFS(G,p->headvex); // 递归调用DFS()
}
// 从第1个顶点起,按深度优先递归遍历有向图G,并对每个顶点调用函数Visit
void DFSTraverse(OLGraph G,int(*Visit)(VertexType))
{
int i;
for(i=0;i<G.vexnum;i++)
visited[i]=0; // 访问标志数组置初值(未被访问)
VisitFunc=Visit;
for(i=0;i<G.vexnum;i++) // 由序号0开始,继续查找未被访问过的顶点
if(!visited[i])
DFS(G,i);
printf("\n");
}
// 构造一个空队列Q
int InitQueue(SqQueue *Q)
{
//给队头队尾指针分配空间,并置空
(*Q).base=(QElemType *)malloc(MAXQSIZE*sizeof(QElemType));
//这里的Q.base相当于一个数组头
if(!(*Q).base) // 存储分配失败
exit(0);
(*Q).front=(*Q).rear=0; //下标初始化为0
return 1;
}
// 若队列Q为空队列,则返回1,否则返回0
int QueueEmpty(SqQueue Q)
{
if(Q.front==Q.rear) // 队列空的标志
return 1;
else
return 0;
}
// 插入元素e为Q的新的队尾元素
int EnQueue(SqQueue *Q,QElemType e)
{
if(((*Q).rear+1)%MAXQSIZE==(*Q).front) // 队列满
return 0;
(*Q).base[(*Q).rear]=e;
(*Q).rear=((*Q).rear+1)%MAXQSIZE;
return 1;
}
// 若队列不空,则删除Q的队头元素,用e返回其值,并返回1;否则返回0
int DeQueue(SqQueue *Q,QElemType *e)
{
if((*Q).front==(*Q).rear) // 队列空
return 0;
*e=(*Q).base[(*Q).front];
(*Q).front=((*Q).front+1)%MAXQSIZE;
return 1;
}
// 从第1个顶点起,按广度优先非递归遍历有向图G,并对每个顶点调用
// 函数Visit,使用辅助队列Q和访问标志数组visited
void BFSTraverse(OLGraph G,int(*Visit)(VertexType))
{
int v,u,w;
VertexType u1,w1;
SqQueue Q;
for(v=0;v<G.vexnum;v++)
visited[v]=0;
InitQueue(&Q);
for(v=0;v<G.vexnum;v++)
if(!visited[v])
{
visited[v]=1;
Visit(G.xlist[v].data);
EnQueue(&Q,v);
while(!QueueEmpty(Q))
{
DeQueue(&Q,&u);
strcpy(u1,*GetVex(G,u));
for(w = FirstAdjVex(G,u1); w >= 0;
w = NextAdjVex(G,u1,strcpy(w1,*GetVex(G,w))))
if(!visited[w]) // w为u的尚未访问的邻接顶点的序号
{
visited[w]=1;
Visit(G.xlist[w].data);
EnQueue(&Q,w);
}
}
}
printf("\n");
}
// 输出有向图G
void Display(OLGraph G)
{
int i;
ArcBox *p;
printf("共%d个顶点,%d条弧:\n",G.vexnum,G.arcnum);
for(i=0;i<G.vexnum;i++)
{
printf("顶点%s: 入度: ",G.xlist[i].data);
p=G.xlist[i].firstin;
while(p)
{
printf("%s ",G.xlist[p->tailvex].data);
p=p->hlink;
}
printf("出度: ");
p=G.xlist[i].firstout;
while(p)
{
printf("%s ",G.xlist[p->headvex].data);
if(p->info) // 该弧有相关信息
printf("弧信息: %s ",p->info);
p=p->tlink;
}
printf("\n");
}
}
int visit(VertexType v)
{
printf("%s ",v);
return 1;
}
int main()
{
int j,k,n;
OLGraph g;
VertexType v1,v2;
CreateDG(&g);
Display(g);
printf("\n===============================================\n");
printf("修改顶点的值,请输入原值 新值: \n");
scanf("%s%s",v1,v2);
PutVex(&g,v1,v2);
printf("插入新顶点,请输入顶点的值: \n");
scanf("%s",v1);
InsertVex(&g,v1);
printf("插入与新顶点有关的弧,请输入弧数: \n");
scanf("%d",&n);
for(k=0;k<n;k++)
{
printf("请输入另一顶点的值 另一顶点的方向(0:弧头 1:弧尾): \n");
scanf("%s%d",v2,&j);
if(j)
InsertArc(&g,v2,v1);
else
InsertArc(&g,v1,v2);
}
Display(g);
printf("删除一条弧,请输入待删除弧的弧尾 弧头:\n");
scanf("%s%s",v1,v2);
DeleteArc(&g,v1,v2);
Display(g);
printf("删除顶点及相关的弧,请输入顶点的值: \n");
scanf("%s",v1);
DeleteVex(&g,v1);
Display(g);
printf("深度优先搜索的结果:\n");
DFSTraverse(g,visit);
printf("广度优先搜索的结果:\n");
BFSTraverse(g,visit);
DestroyGraph(&g);
printf("\n===============================================\n");
system("pause");
return 0;
}
十字链表
最新推荐文章于 2022-04-19 22:27:09 发布