channel_first 和channel_last

以三通道为例

1、channel_first (channel, height,width)

设上图为(3,2,2

解释:三个通道(3层)每个通道对应一个二维数组,即上图中的一层

黄:((1,2),

          (3,4))

绿:((5,6),

           (7,8))

蓝:((9,10),

           (11,12))

 

2、channel_last (height,width,channel)

上图为(2,2,3)

解释:先构建一个2*2的数组,数组中每个元素不是一个数值,而是3个数值,即三个通道的值。

(【1,5,9】,【2,6,10】)

(【3,7,11, 【4,8,12】)

 

3.总结

channel_first:先分层,每层一个二维数组,最终的array是包含三个二维数组的3维数组。

channel_last: 不分层,把三层看作一个整体,但是这个整体的每个元素不再是一个值,而是3个值。

 

 

 

 

 

在PyTorch中,一般使用"channel_first"格式的输入数据来定义卷积神经网络,特别是在使用GPU进行训练时,因为GPU更适合处理这种数据格式。但是,在某些情况下,也可以使用"channel_last"格式的输入数据,例如在使用一些特殊的库或工具时,或者在一些特定的应用场景下。 下面是一些使用"channel_first"和"channel_last"格式的输入数据的示例: - "channel_first":对于一个4D张量(batch_size, channels, height, width),可以使用以下方式来定义输入数据: ```python import torch # 定义一个batch_size为32,通道数为3,高度为224,宽度为224的输入张量 input_data = torch.randn(32, 3, 224, 224) ``` - "channel_last":对于一个4D张量(batch_size, height, width, channels),可以使用以下方式来定义输入数据: ```python import torch # 定义一个batch_size为32,高度为224,宽度为224,通道数为3的输入张量 input_data = torch.randn(32, 224, 224, 3) ``` 需要注意的是,如果使用"channel_last"格式的输入数据来定义卷积神经网络,需要在网络定义中增加一行代码来将输入数据转换为"channel_first"格式,例如: ```python import torch.nn as nn # 定义一个卷积神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # 将输入数据从channel_last转换为channel_first x = x.permute(0, 3, 1, 2) x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x ``` 需要注意的是,如果使用"channel_last"格式的输入数据来定义卷积神经网络,需要在网络定义中增加一行代码来将输入数据转换为"channel_first"格式,例如: ```python import torch.nn as nn # 定义一个卷积神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # 将输入数据从channel_last转换为channel_first x = x.permute(0, 3, 1, 2) x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x ``` 需要注意的是,模型中的其他层和参数都不需要改变,只需要在输入数据的格式上进行调整即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值